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Abstract: Preconditioning with ischemia/hypoxia (IPC/HPC) or clinically available volatile anesthetics such as isoflu-
rane (Iso-PC) could activate cardioprotective signaling pathways, thereby reducing myocardial ischemia/reperfusion 
(IR) injury. However, their molecular targets remain elusive. We herein investigated the roles of syntaxin 1A (Stx-1A) 
in cardiomyocyte protection induced by HPC and Iso-PC. Both in vivo myocardial IR model and in vitro cardiomyocyte 
hypoxia/reoxygenation (HR) model were used to test the effects of IR/HR, IPC/HPC and Iso-PC on Stx-1A protein 
expression. Stx-1A knockdown and overexpression in cardiomyocytes were achieved by adenovirus infection to de-
fine the relationship between Stx-1A levels and IPC/Iso-PC-induced cardioprotection. Cardiac troponin T (cTnT), cell 
apoptosis rate, and cell viability were introduced as indicators for cardiomyocyte HR injury. Changes of cardioprotec-
tive signaling pathways activities including PI3K/AKT/GSK3β, ERK1/2, STAT3 and PKC were also detected using 
Western blot. Rat cardiomyocyte Stx-1A was upregulated 4 hours after IR or HR. IPC/HPC as well as Iso-PC further 
increased Stx-1A expression compared with IR/HR. Stx-1A knockdown was accompanied with more cell apoptosis 
and decreased cell viability while overexpression of Stx-1A seemed cardioprotective. Iso-PC induced decrease in cell 
apoptosis and increase in cell viability but not HPC-induced cardioprotection was reversed by Stx-1A shRNA trans-
fection. No difference in cell apoptosis or cell viability was found before and after Stx-1A overexpression in each 
group. Moreover, Stx-1A knockdown were accompanied with increased PI3K/AKT/GSK3β activities irrespective 
of the treatments. Stx-1A is cardioprotective and a potential target of isoflurane induced cardioprotection. Further 
studies are needed to test whether stx-1A is regulated by AKT/GSK3β signaling.
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Introduction

Perioperative myocardial ischemia/reperfusion 
(IR) injury which occurs to varying degrees in 
patients with cardiac surgery and in 1 to 4% of 
unselected non-cardiac surgical patients, is 
associated with increased morbidity and mor-
tality [1, 2]. Methods and drugs that reduce 
perioperative myocardial IR injury (such as isch-
emia preconditioning (IPC) and adenosine) also 
improve the prognosis of patients [3-5]. Besides 
these efforts, the cardioprotective roles of 
widely used volatile anesthetics such as isoflu-
rane (Iso-PC) and sevoflurane are attracting 

increased interests [6-8]. However, the molecu-
lar mechanisms underlying volatile anesthetics 
and IPC-induced cardioprotection remain elu- 
sive. 

Iso-PC and IPC have been found to work proba-
bly via similar cardioprotective signaling path-
ways including PI3K/AKT/GSK3β, ERK1/2, JNK, 
PKC, KATP channels to alleviate cardiac IR injury 
[7, 9]. Moreover, their cardioprotection could be 
mitigated by similar pathophysiological condi-
tions such as diabetes mellitus [10, 11]. These 
common traits encourage further search for 
more cardioprotective candidates that can be 
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modulated by both volatile anesthetics precon-
ditioning and IPC. Recent studies indicated that 
syntaxin 1A (Stx-1A), a membrane protein, 
which forms SNARE (soluble N-ethylmaleimide 
sensitive factors attachment protein or SNAP 
receptor) complex together with vesicle-associ-
ated membrane protein (VAMP) and SNAP25, 
might be one choice. 

Stx-1A is widely expressed in the brain, endo-
crine system, the heart as well as other organs 
[12]. It functions primarily but not exclusively 
through the SNARE complex-mediated synaptic 
vesicle fusion [13]. In particular, Stx-1A was 
found to be able to regulate myocardial IR inju-
ry-related signaling pathways such as KATP 
channels and calcium channels [12, 14-16]. 
Moreover, Stx-1A was up-regulated after isch-
emia [17]. These findings suggested a potential 
role of Stx-1A in cardiac IR injury. More impor-
tantly, volatile anesthetics including halothane 
and isoflurane were found to interact with Stx-
1A to exert hypnosis [18-20]. 

To test the hypotheses that (1) cardiac Stx-1A 
levels were regulated by IR, HR, IPC and Iso-PC; 
(2) cardiomyocyte Stx-1A levels were related 

young rats were kept in a temperature-con-
trolled (22±2°C) environment under a 12-12 
hour light-dark cycle (lights on at 8:00 am) with 
free access to food and water. 

Experimental design

The goal of this study was to test the role of Stx-
1A in cardioprotection produced by IPC and Iso-
PC. As shown in Figure 1, both in vivo myocar-
dial IR model and in vitro cardiomyocyte HR 
model were used in our study. Rats or neonatal 
ventricle cells were divided into five groups in 
each model: Sham (control); Iso (isoflurane 
exposure only); IR (ischemia/reperfusion) or HR 
(hypoxia/reoxygenation); IPC (ischemia pre-
conditioning) or HPC (hypoxia pre-conditioning) 
and Iso-PC (isoflurane pre-conditioning). 

To test hypothesis 1, Stx-1A protein levels were 
detected by Western blot in vivo and in vitro. To 
test hypothesis 2, Stx-1A knockdown and over-
expression in cardiomyocytes were achieved by 
adenoviral infection. In the experiments de- 
signed for hypothesis 3, the activities of PI3K/
AKT/GSK3β, ERK1/2, STAT3 and PKC signaling 
were detected in vitro using Western blot. 

Figure 1. Experimental protocol for in vivo IR (A) and in vitro HR (B) model. 
Sham, Sham group; Iso, Isoflurane treatment without I/R or H/R injury; IR 
(ischemia/reperfusion) or HR (hypoxia/reoxygenation); IPC (ischemia pre-
conditioning) or HPC (hypoxia preconditioning); Iso-PC (isoflurane precon-
ditioning); W, washout for 10 minutes.

with IPC and Iso-PC induced 
protection against cardiomyo-
cyte HR injury; (3) aforemen-
tioned cardioprotective signal-
ing pathways were involved in 
Stx-1A-mediated cardioprotec-
tion, the current study was 
conducted.

Materials and methods

Animals

All procedures performed in this 
study were approved by the 
Animal Care and Use Committee 
of the Second Military Medical 
University (SMMU, Shanghai, 
China) and conformed to the 
Guide for the Care and Use of 
Laboratory Animals published 
by the US National Institutes  
of Health (No. 85-23, revised 
1996). Young male (12-16-week-
old, 250-300 g) and newborn  
(P1-3) Sprague-Dawley rats 
(SIPPR/BK, Shanghai, China) 
were used in this study. The 
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Rat in vivo myocardial IR model

Rats were anesthetized with intraperitoneal 
pentobarbital sodium (40 mg/kg) and ventilat-
ed via endotracheal intubation on a rodent res-
pirator. A thoracotomy was performed at the 
fourth intercostal space, and a reversible coro-
nary artery snare was placed around the left 
anterior descending coronary artery. Myocardial 
IR was performed by tightening the snare for 30 
minutes and then loosening it for 4 hours or 24 
hours. IPC was induced by 3 episodes of 
10-minute ischemia followed by 5-minute 
reperfusion before the 30-minute ischemia 
[21], while isoflurane preconditioning was ful-
filled by an exposure to 1.5% isoflurane (approx-
imately 1 MAC for rats) [22] for 30 minutes 
before ischemia. The concentration of isoflu-
rane was monitored by Cardiocap 5 (Datex-
Ohmeda, Madison, WI, USA) and isoflurane was 
driven by 100% oxygen.

Cardiomyocyte in vitro HR model

Cardiomyocyte HR was performed as previous-
ly described [23] (Figure 1). In brief, HPC was 
induced by 3 episodes of 10-minute hypoxia 
followed by 5-minute reoxygenation before the 
12-hour hypoxia, while isoflurane precondition-
ing was performed by an exposure to 1.5% iso-
flurane for 30 minutes before hypoxia. Cells 
assigned to Iso group only received isoflurane 
exposure and suffered from no HR.

Determination of myocardial injury by identify-
ing cardiac troponin T (cTnT) release

The cTnT levels were detected using Enzyme-
linked immunosorbent assay (ELISA) for in vivo 
blood samples and in vitro cell culture medium 
(Figure 1). Briefly, approximately 1 mL of blood 
was drawn from rat left ventricle, and trans-
ferred to a 1.5 mL tube. After clotting, the blood 
was centrifuged at 3000 RPM for 5 minutes. 
For primary cardiomyocytes, the culture medi-
um was collected at the same time point. All 
sera and culture samples were frozen and 
stored at -80°C until determination. The quanti-
tation was performed by the department of 
clinical laboratory, Changhai hospital affiliated 
to SMMU.

Cell viability assay

Cardiomyocyte viability was detected using 
MTT assay. In short, cells were plated in 96-well 

plates at a density of 1×104 cells per well. After 
reperfusion, 50 μL of MTT (5 mg/mL in PBS; 
Sigma, St Louis, MO, USA) was added to each 
well and incubated for 4 hours. Then the medi-
um was removed carefully, and 200 μL of 
DMSO was added to each well. The plates were 
shaken for 10 minutes, and delivered to a micro 
plate reader for absorbance recording at 570 
nm. An increase in absorbance at a wavelength 
of 570 nm represents a better cell viability.

Detection of cell apoptosis

Cell morphological changes were observed by 
flow cytometry. Cells were stained with Anne- 
xin-V and propidium iodide (PI) to quantify apop-
tosis using a commercial Annexin-V apoptosis 
detection kit APC (eBioscience, San Diego, CA, 
USA). Prepared cells were washed twice with 
ice-cold PBS and re-suspended in 200 μL of 
binding buffer. A total of 5 μL of APC and 5 μL of 
PI were then added to the cell suspension, 
which were then analyzed with a FACSCalibur 
flow cytometer.

Gene silence and overexpression by adenovi-
rus infection

The recombinant adenovirus vector for silenc-
ing of Stx-1A expression (Stx-1A-siRNA), adeno-
virus vector for Stx-1A overexpression and neg-
ative adenovirus vector were purchased from 
Shanghai GeneChem Company (Shanghai, 
China). The target sequence of siRNA against 
rat Stx-1A was 5’-UCUUCUUAAUGUCCGACAU- 
GAGCUC-3’, as described by Chen et al [24]. 
The recombinant adenovirus was added into 
the culture medium at 106 PFU/ml and co-incu-
bated with cardiomyocytes 36 hours ahead of 
hypoxia protocol. The efficiency of gene knock-
down and overexpression were assessed by 
Western blot.

Western blot

The ventricles of adult rats and neonatal car-
diomyocytes were lysed in ice-cold RIPA lysis 
buffer with 1% protease and phosphatase 
cocktail. Lysates were collected and protein 
concentration was determined by the bicincho-
ninic acid (BCA) protein assay kit (Beyotime, 
Jiangsu, China). Equal amounts of protein were 
separated in 10% SDS-polyacrylamide gel and 
subsequently transferred to a nitrocellulose 
membrane. After blocking, membranes were 
incubated overnight with anti-Stx1A (1:1000; 
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SYSY, Geottingen, Germany), anti-ERK 1/2 (1: 
1000), anti-pERK1/2Thr202/Tyr204 (1:1000), anti- 
AKT (1:1000), anti-pAKTSer473 (1:1000), anti-
GSK3β (1:1000), anti-pGSK3βSer9 (1:1000), 
anti-STAT3 (1:1000; Epitomics, Burlingame, CA, 
US), anti-pSTAT3Tyr705 (1:1000; Epitomics, Bur- 
lingame, CA, US) or anti-PKC (1:1000). All anti-
bodies were from Cell Signaling Technology 
(Danvers, MA, USA) unless specified. Then the 
membranes were incubated with a horseradish 
peroxidase-conjugated secondary antibody. 
The blots were visualized by an enhanced che-
miluminescence reaction (ECL) system and 
photographed by ChemiDocTM XRS+ System 
(Bio-Rad, Hercules, CA, USA). β-actin (1:5000; 
Bioworlde, Jiangsu, China) was used as an 
internal control. Band densitometry analysis 
was performed using QuantityOne software 
(Bio-Rad).

Statistical analysis

Statistics were calculated using Graphpad 
Prism 6.0 (San Diego, CA, USA). Data were 
expressed as mean±SD (standard deviation) 
from at least three experiments. Statistical val-
ues were analyzed using one-way ANOVA and 
variations of different groups were compared 

with the Tukey’s post hoc test. A P-value of 
smaller than 0.05 (two-tailed) was considered 
statistically significant.

Results

Stx-1A was up-regulated by IR, HR and isoflu-
rane

To explore whether there was a change of Stx-
1A levels during IPC/HPC and Iso-PC induced 
cardioprotection, we firstly induced HR injury 
on neonatal ventricular myocytes. After 4 hours 
of reoxygenation following hypoxia, a significant 
increase of Stx-1A protein was observed. 
Meanwhile, Stx-1A levels were further increased 
by HPC and Iso-PC in comparison with HR. 
Isoflurane alone could also increase Stx-1A 
expression (Figure 2A). The enhanced Stx-1A 
expression by IR, IPC, Iso and Iso-PC were simi-
larly detected in vivo (Figure 2B). After 24 hours 
of reperfusion or reoxygenation, Stx-1A level 
returned to normal (Figure 2C and 2D). 

In the cardiomyocytes, HPC and Iso-PC signifi-
cantly reduced the cTnT levels compared with 
HR. Similar results of cTnT concentrations were 
also observed in vivo. Taken together, these 
results suggested a potential role of Stx-1A in 
cardiomyocyte protection (Figure 2E and 2F).

Knockdown of Stx-1A exaggerates HR injury 
and overexpression of Stx-1A was cardiopro-
tective

Stx-1A knockdown and overexpression was 
performed in rat neonatal ventricular myocytes 
36 hours ahead of hypoxia. As shown in Figure 
3, our adenovirus transfection resulted in suc-
cessful inhibition (about 70%) or enhancement 
(about 5 fold) of Stx-1A respectively. 

Stx-1A knockdown or overexpression caused 
no difference in cell apoptosis (Figure 4) or via-
bility (Figure 5). When these cells underwent 
H/R, a trend towards, although not significantly, 
higher cell apoptosis rate and lower cell viabili-
ty were seen in cells subject to Stx-1A knock-
down while lower apoptosis rates and higher 
cell viability were detected in cells with Stx-1A 
overexpression (Figures 4 and 5). 

Figure 2. Stx-1A expression and cTnT release after HR and IR. A. Stx-1A expression in primary cardiomyocytes 4 
hours after hypoxia. B. Stx-1A expression in hearts 4 hours after ischemia. C. Stx-1A expression in primary cardio-
myocytes 24 hours after hypoxia. D. Stx-1A expression in hearts 24 hours after ischemia. E. cTnT release 4 hours 
after hypoxia. F. cTnT release 4 hours after ischemia. *, P<0.05 and **, P<0.01. 

Figure 3. Stx-1A expression after adenovirus trans-
fection of plasmid vector, siRNA or rat Stx-1A. *, 
P<0.05 and **, P<0.01.
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Figure 4. Cell apoptosis in wild-type cardiomyocytes and cardiomyocytes subjected to Stx-1A knockdown and overexpression. A-C. Representative results of flow 
cytometry for wild-type cardiomyocytes and cardiomyocytes subjected to Stx-1A knockdown and overexpression. D. Histograms showing apoptosis rates in three 
kinds of cells. *, P<0.05 and **, P<0.01.
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Stx-1A mediates Iso-PC induced but not HPC 
induced cardioprotection

We further tested the role of Stx-1A in cardio-
protection produced by HPC and Iso-PC. As 
shown in Figures 4 and 5, Stx-1A knockdown or 
overexpression did not affect HPC-induced cell 
survival and higher cell viability. However, the 
protective effect of Iso-PC on cell survival after 
HR was nearly completely blocked by Stx-1A 
knockdown (Figure 4). Meanwhile, there was a 
significant decrease in cell viability when Stx-1A 
knockdown was conducted before Iso-PC 
(Figure 5). No significant changes in cell apop-
tosis were detected in cells subjected to Iso-PC 
and HR when Stx-1A levels were artificially 
increased (Figure 4). These findings suggested 
that Stx-1A was essential for Iso-PC but not 
HPC-induced cardiomyocyte protection. 

AKT/GSK3β activity was up-regulated by Stx-
1A knockdown

We further detected the activity changes of 
pre-mentioned cardioprotection signaling path-
ways using Western blot. As shown in Figure 6, 
HPC up-regulated ERK1/2, STAT3, PKC, AKT 
and GSK3β activities in all types of cardiomyo-
cytes, but only AKT and GSK3β activities 
showed Stx-1A level-dependent changes. Stx-
1A knockdown was accompanied with signifi-
cant increases in pAKT (Figure 6A and 6B) and 
pGSK3β relative levels (Figure 6A and 6C) in all 
three groups. No significant difference were 
found between wild-type and Stx-1A-over- 
expressed cells in pAKT or pGSK3β levels.

and 5, a role of AKT/GSK3β signaling in Iso-PC 
induced cardioprotection mediated by Stx-1A 
might be found.

Discussion

In the present study, we found that 1) Rat car-
diomyocyte Stx-1A level was up-regulated by 
ischemia in vivo and hypoxia in vitro, and HPC/
IPC as well as Iso-PC could further increase Stx-
1A expression. 2) Artificial regulation of Stx-1A 
levels had an influence on HR-induced cardio-
myocyte apoptosis and cell inviability as well as 
the cardioprotective ability of Iso-PC but not 
HPC. 3) Stx-1A knockdown reversed Iso-PC 
induced cardioprotection and increased AKT/
GSK3β activities. Taken together, these find-
ings suggest that Stx-1A was cardioprotective 
and isoflurane preconditioning might activate 
AKT/GSK3β signaling to increase Stx-1A 
expression and exert cardioprotection.

During stress or injury such as ischemia, Stx-1A 
expression was rapidly increased [17, 25]. 
Increased Stx-1A might participate in cell sal-
vage or repair through mediating neurotrans-
mitter release and plasma membrane recycling 
thereby exerting protection [26, 27]. Previous 
studies have shown that Stx-1A is present in rat 
cardiomyocytes and regulates KATP channels 
during stress [16, 28]. Our current study found 
that cardiomyocytes Stx-1A level was increased 
shortly after cardiac IR and HR and returned to 
baseline thereafter (Figure 2). Furthermore, 
Stx-1A overexpression partially reversed cell 
injury caused by hypoxia (Figures 4 and 5). 
These results identified a role of Stx-1A in car-

Figure 5. Cell viability assay results in wild-type cardiomyocytes and cardio-
myocytes subjected to Stx-1A knockdown and overexpression. *, P<0.05 
and **, P<0.01.

We further tested the influ-
ence of Stx-1A levels on Iso-
PC induced cardioprotection 
signaling pathways. Similar to 
HPC, Iso and Iso-PC caused 
significant increases in ERK1/ 
2, STAT3, PKC, AKT and 
GSK3β activities in all types 
of cardiomyocytes and only 
AKT and GSK3β activities was 
regulated by Stx-1A knock-
down. Cells with Stx-1A over-
expression caused no signifi-
cant changes in pAKT or 
pGSK3β levels compared  
with wild-type cardiomyocytes 
(Figure 6D-F). Together with 
results shown in Figures 4 
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dioprotection. Consistent with our findings, pre-
vious researches had found a role of Stx-1A in 
maintaining cell viability [29, 30]. Peng et al 
found that botulinum neurotoxins, which 
cleaved and incapacitate Stx-1A and SNAP25 
could cause neuronal death [29]. They also 
found that only a small percentage of endoge-
nous Stx-1A was needed for supporting neuron 
survival.

The common signaling pathways utilized by 
both HPC and Iso-PC encouraged us to try to 

find a common molecule. As Stx-1A was an 
important target of volatile anesthetics [18-20, 
31] and could interact with cardioprotective 
pathways such as KATP channels [12, 14-16], we 
proposed that Stx-1A might be the potential tar-
get and tested the relationship between Stx-1A 
levels and cardioprotection induced by HPC 
and Iso-PC. Interestingly, when Stx-1A was 
knocked down by siRNA, the protective effect 
of Iso-PC but not HPC was blocked. Besides, no 
difference in Iso-PC and HPC induced cardio-
protection was found when Stx-1A was artifi-

Figure 6. Cardioprotective signaling pathway activities. A. Representative strips of ERK1/2, AKT/GSK3β, JNK/STAT3 
and PKC during HPC. β-actin was used as internal control. B. Histograms showing relative AKT activities under 
different circumstances. C. Histograms showing relative GSK3β activities under different circumstances. D. Repre-
sentative strips of ERK1/2, AKT/GSK3β, JNK/STAT3 and PKC during Iso-PC. β-actin was used as internal control. 
E. Histograms showing relative AKT activities under different circumstances. F. Histograms showing relative GSK3β 
activities under different circumstances. *, P<0.05 and **, P<0.01. 
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cially up-regulated (Figures 4 and 5). These 
data demonstrated that Iso-PC but not HPC tar-
get Stx-1A to exert cardioprotection and implied 
that Iso-PC and HPC might utilize similar path-
ways to induce different candidate proteins 
expression. Another possible explanation might 
by the times of preconditioning cycles. 
Previously studies have demonstrated that 
three cycles of IPC would produce a greater pro-
tection against myocardial injury than one cycle 
of IPC and repetitive IPC may activate more 
pathways than a single IPC stimulus [32, 33]. In 
our present study, we performed one-cycle Iso-
PC and three-cycle HPC. Three cycles of HPC 
may elicited greater protective effect and acti-
vate more pathways comparing with one cycle 
of Iso-PC.

When exploring the signaling pathways partici-
pating in Iso-PC cardioprotection mediated by 
Stx-1A, we found AKT/GSK3β signaling was 
elevated by Iso-PC, HPC and Stx-1A knockdown 
(Figures 2 and 6) while no change was found 
when Stx-1A was overexpressed (Figure 6). 
Considering that enhanced phosphorylation of 
AKT and GSK3β was cardioprotective, these 
data suggested Stx-1A a downstreaming but 
not an upstreaming molecule of AKT/GSK3β 
phosphorylation and the activation of AKT/
GSK3β pathway could be attributed to the feed-
back regulation of Stx-1A knockdown. This was 
identical with previous study by Cheng et al [34] 
in which they found that insulin induced AKT 
activation could robustly enhance Stx-1A 
expression in pancreatic β cells. These data 
also suggested a cardioprotective role of 
Stx-1A.

Earlier studies have documented that various 
pathological conditions may render the myocar-
dium more susceptible to IR injury, such as dia-
betes (hyperglycemia), obesity [35] and hyper-
lipidemia [36]. And GSK-3β over-expression 
has been shown to play critical roles in diabe-
tes-induced myocardial oxidative damage and 
remodeling. Furthermore, patients with diabe-
tes mellitus showed defects in Stx-1A expres-
sion [37, 38]. Along with our finding, these 
results suggested a potential role of Stx-1A in 
ischemia-susceptible myocardium of patients 
undergoing metabolic disorders.

There were several limitations in our study. 
Firstly, we did not conduct in vivo experiments 
to confirm the cardioprotective role of Stx-1A. 
Further studies using Stx-1A knockout mice 

might be helpful. Secondly, our data suggested 
that Stx-1A expression in cardiomyocytes was 
regulated by AKT/GSK3β signaling but we did 
not use corresponding pharmacological strate-
gies to identify it. Thirdly, the downstreaming 
pathways of Stx-1A in cardioprotection remain 
elusive although several potential mechanisms 
might responsible which included plasma mem-
brane repair, autocrine/paracrine mechanism 
or KATP channels [16, 26, 27].

In conclusion, our study found that syntaxin-1A 
is cardioprotective and a potential target of iso-
flurane induced cardioprotection. Further stud-
ies are needed to test whether syntaxin-1A was 
regulated by AKT/GSK3β signaling.
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