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Abstract: Aim: Propofol, an intravenous anesthetic agent, has been found to inhibit invasion and growth of pancre-
atic cancer cells in vitro. However, the mechanisms underlying these tumor-promoting phenotypes are not known. 
The microRNA miR-21 has been reported to be overexpressed in pancreatic cancer, and overexpression of miR-21 
confers a poor prognosis to patients with pancreatic cancer. Further studies have identified the E-cadherin transcrip-
tion repressor Slug as a direct target of miR-21. In this study, we assessed whether propofol inhibits invasion and 
growth of pancreatic cancer cells by regulation of miR-21/Slug signaling. Methods: PANC-1 pancreatic cancer cells 
were treated with different concentrations of propofol (1, 5 or 10 μg/mL) for 48 h, or 10 μg/mL propofol for 12, 24 
or 36 h. Cell survival and apoptosis were detected by LDH release, BrdU cell proliferation and flow cytometry assays; 
cell invasion and migration were detected by transwell migration assays. miR-21 mimic (miR-21), Slug cDNA, PUMA 
siRNA and E-cadherin siRNA transfection was used to assess the signaling pathway in which propofol functions 
in PANC-1 cells. Protein and mRNA expression, respectively, were detected by western blotting and quantitative 
reverse transcriptase polymerase chain reaction (qRT-PCR) assays. Results: Propofol inhibited growth and invasion, 
and induced apoptosis, in a dose- and time-dependent manner in PANC-1 cells. Propofol inhibited miR-21 levels and 
decreased Slug expression, resulting in an increase in Slug-dependent PUMA and E-cadherin expression in PANC-1 
cells. miR-21 overexpression or PUMA or E-cadherin silencing impaired propofol-induced cell apoptosis, growth and 
invasion. Re-expression of Slug attenuated the expression of PUMA and E-cadherin that was induced by propofol 
treatment, the reduction of growth and invasion, and the increase in cell apoptosis. Conclusions: Propofol can ef-
fectively inhibit invasion and induce apoptosis of PANC-1 cells by regulating miR-21/Slug signals.
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Introduction

Formation of circulating tumor cells (CTCs) is 
widely accepted to be a key step in the meta-
static process [1]. With the growth of a primary 
tumor, angiogenesis is activated and, subse-
quently, primary tumor cells enter the blood-
stream, leading to the formation of CTCs. CTCs 
that survive in the vasculature arrest in capi- 
llaries distant from the primary tumor site and 
extravasate into a foreign microenvironment.  
At this point, such cancer cells are speculated 
to revert to an epithelial phenotype via a mes-
enchymal-epithelial transition (MET) and either 
stay dormant or proliferate into macroscopic 
secondary tumors [2, 3].

Numerous studies have recently demonstrated 
that tumor cells intravasate, rapidly transit th- 
rough the circulation, and arrest in the vascula-
ture of a secondary organ during surgery, and 
that this process generally requires only a few 
minutes [4-6]. In addition, platelets form ag- 
gregates around CTCs or arrest tumor cells  
during this period. It has recently been report- 
ed that 7 to 48 h after tail-vein injection of 
tumor cells, monocytes/macrophages are also 
recruited to their vicinity. Extravasation typical- 
ly takes place within the first 24-72 h after  
initial arrest. By that time, most tumor cells 
have exited the bloodstream and seeded into 
the stroma of the secondary site [7]. The inva-
sion of tumor cells in the circulation may occur 
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very early in tumor development. Therefore, the 
first hours of metastasis during surgery may be 
a potential therapeutic window. However, cur-
rently therapy is not altered based upon CTCs 
status. A lack of understanding of the biology of 
CTCs has served as a barrier to develop ratio-
nal therapy tailored to these high risk patients.

Propofol, the intravenously administered hyp-
notic agent, is widely used in all kinds of sur- 
geries due to its short effect and rapid recov-
ery. Patients receiving total intravenous anes-
thesia (TIVA) with propofol have been shown  
to experience less postoperative pain. Accumu- 
lating clinical evidence indicates that propo- 
fol TIVA for cancer surgery reduces the risk  
of recurrence or metastasis during the initial 
years of follow-up [8-11], indicating that pro- 
pofol might kill any cancer cells released into 
the circulation in the perioperative period.

MicroRNAs (miRs) are endogenous, non-cod- 
ing RNA molecules that act to regulate nearly 
every cellular process through inhibition of tar-
get messenger RNA expression. The role for 
miRs in the carcinogenesis, development and 
progression of pancreatic cancer has been well 
established [12]. miR-21 is overexpressed in 
the early stages of pancreatic cancer (PC) [13], 
and it has been shown that PC cells are ad- 
dicted to miR-21 [14]. Lentiviral targeting of 
miR-21 by its antagonists resulted in increas- 
ing angiogenesis as well as strong inhibition  
of proliferation of PC cells both in vitro and  
in vivo. Furthermore, combination treatment in- 
volving miR-21 antagonists and gemcitabine 
(125 mg/kg) leads to significant regression of 
tumor growth in vivo.

Recently, it has found that propofol dose- and 
exposure time-dependently induced signifi- 
cant embryonic stem cell-derived neurons and 
down-regulated several miRs, including miR-21 
[15]. Wang et al. reported that propofol inhi- 
bited hydrogen peroxide-induced upregulation 
of miR-21 and increased its target gene-me- 
diated programmed cell death [4]. Propofol-
mediated injury was attenuated by restoring-
miR-21 expression [16].

Slug is a zinc finger transcriptional repressor of 
the Slug/Snail family that promotes carcino- 
ma cell invasion, stemness and survival [17]. 
Clinical evidence supports a role for Slug in 
advanced pancreatic malignancies, and high 
Slug expression in PC is associated with poor 

prognosis, recurrence and metastasis [18]. 
Slug is known to inhibit E-cadherin transcrip-
tion, attenuate the epithelial phenotype and 
promote malignancy [19]. In addition, targeting 
Slug induces apoptosis by repressing PUMA 
(p53 pro-apoptotic target gene) [20]. PUMA 
(BBC3), or p53-upregulated modulator of apop-
tosis, is a BH3-only member of the Bcl-2 family 
and a target of p53-mediated apoptosis [21]. It 
activates an apoptotic cascade by facilitating 
Bax activation, causing cytochrome C release 
from the mitochondria, caspase-3 activation 
and DNA fragmentation [22].

Accumulating evidence suggests that the 
miRs/Slug axis regulates mesenchymal tumor 
development by interfering with metastatic 
cancer cell programming [23-26]. It has re- 
cently found that miR-21 promotes EMT in  
lung epithelial cells during lung fibrosis [27]. 
miR-21 substantially promotes the fibroblast-
like phenotype arising from fibrogenic EMT, 
whereas an antagonist that targets miR-21 
blocks this effect as assessed by the E-cad- 
herin/α-smooth muscle actin balance, cell via-
bility, matrix activity and cell motility [28].

In the present study, we assessed the effect  
of propofol on apoptosis, survival and inva- 
sion of pancreatic cancer cells in vitro and 
explored its molecular mechanisms. Our find-
ings demonstrate that propofol induces apop-
tosis and inhibits survival and invasion of PC 
cells by regulating the miR-21/Slug/E-cadherin 
and miR-21/Slug/PUMA signaling pathways.

Materials and methods

Cell line and culture

The human pancreatic cancer PANC-1 cell line 
was purchased from the Type Culture Collec- 
tion of the Chinese Academy of Sciences (Sh- 
anghai, China) and was routinely maintained  
at 37°C in 5% CO2 in RPMI 1640 supplement- 
ed with 10% heat inactivated (1 h at 58°C)  
fetal calf serum, 1X L-glutamine, 1 mM so- 
dium pyruvate, 1X nonessential amino acids, 
100 units/mL of penicillin, and 0.1 mg/mL of 
streptomycin (Invitrogen, Hangzhou, China).

miR-21 mimic and siRNA/cDNA transfection

PANC-1 cells were seeded into 24-well plates  
at 60-70% confluence and kept in an incubator 
at 37°C and 5% CO2 overnight. miR-21 mimics 
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(miR-21) and miR-21 negative control mimic 
(NC) were purchased from RiboBio (Guang- 
zhou, China). PUMA, E-cadherin siRNA and  
control siRNAs were purchased from San- 
ta Cruz Biotechnology (Shanghai, China). pc- 
DNA3.1 Slug cDNA and pcDNA3.1 control  
were kindly gifted by Dr. Chen (Department  
of General Surgery, The Affiliated Hospital  
of Qingdao University). miR-21 or NC, PUMA  
or E-cadherin siRNA, or pcDNA3.1 Slug cDNA  
or pcDNA3.1 control were transfected into 
PANC-1 cells using Lipofectamine 2000 (Invi- 
trogen, Shanghai, China) according to manu- 
facturer instructions. Transfected cells were 
incubated at 37°C in a 5% CO2 incubator for  
24 or 48 h. Total cellular RNA and protein  
were harvested separately and stored at  
-80°C until use.

Drug treatment

PANC-1 cells were cultured in 96-well plates  
(3 × 104 per well) and co-incubated with pro- 
pofol (1, 5 or 10 μg/mL) for 48 h or 10 μg/ 
mL propofol for 12, 24 or 36 h. To determine 
the signaling pathways involved in the produc-
tion of miR-21, PANC-1 cells were transfect- 
ed with miR-21, PUMA or E-cadherin siRNA, or 
pcDNA3.1 Slug cDNA or control for 24 h, then 
exposed to propofol (1, 5 or 10 μg/mL) for 48  
h or 10 μg/mL propofol for 12, 24 or 36 h.

Measurement of LDH release

For the LDH release assay, culture medium  
was collected and LDH activity was assess- 
ed using an LDH cytotoxicity assay kit (Guang- 
zhou, China) according to the manufacturer’s 
protocol. LDH activity was quantified by mea-
suring absorbance at 490 nm with a micro- 
plate reader. The ratio of released LDH to to- 
tal LDH was calculated and presented as re- 
lative LDH release compared to non-treated 
cells. All experiments were performed in tripli-
cate and repeated three times.

BrdU cell proliferation assay

The BrdU assay was performed using a BrdU 
cell proliferation assay kit from Oncogene  
(San Diego, CA) according to manufacturer’s 
instructions. Briefly, PANC-1 cells were treated 
per the above methods. Ten hs before treat-
ment termination, BrdU 5’-monophosphate (30 
μg/ml) was added to culture medium. After 
allowing 10 h for BrdU labeling, cells were 

washed three times with sterile PBS, then the 
monoclonal anti-BrdU (2 μg/ml) was added to 
the medium, incubated overnight at 4°C, and 
then incubated for 1 h at room temperature 
with rhodamine-conjugated goat anti-mouse 
IgG (Jackson Immuno Research, West Grove, 
PA, USA; 1:200). The BrdU labeling index, re- 
ported as the percentage of cells labeled with 
BrdU, was determined by counting 10,000 cells 
from two independent reactions using a Zeiss 
Axiovert 40 inverted microscope and AxioVision 
Rel. 4.8.2 software (Carl Zeiss, New York, USA).

Flow cytometer for apoptosis assay

Using an Annexin V-FITC apoptosis detection kit 
(BD Biosciences, Guangzhou, China), Annexin 
V-staining followed by analysis using a FACS 
can flow cytometer was used to detect cell 
apoptosis according to the manufacturer’s 
instructions. Cell Quest software was used to 
analyze the data (Becton-Dickinson, Franklin 
Lakes, NJ, USA).

qRT-PCR analysis of miR-21

Quantitative real-time PCR (qRT-PCR) was per-
formed on cDNA harvested from PANC-1 cell 
suspension the Taqman Fast System and re- 
agents (Applied Biosystems, Foster City, CA) 
per manufacturer’s instructions. Total RNA (1 
μg) was reverse-transcribed using random pri- 
mer and MultiScribe RT (High-Capacity cDNA 
Archive Kit) (Shanghai, China) for mRNA analy-
sis and miScript Reverse Transcription Kit  
for miRNA analysis. PCR was performed with 
the resulting reverse transcription products 
using specific oligonucleotide primers. Reac- 
tions containing miRNA-specific forward primer, 
TaqMan® probe and reverse primers were 
loaded into a PCR reaction plate in quadrupli-
cate and incubated in a thermocycler (iCycler 
iQ, BIO-RAD, Hercules, CA) for 10 min at 95°C 
followed by 40 cycles of denaturing (15 sec.  
at 95°C), annealing and extension (60 sec. at 
60°C). Experiments were set up in quadru- 
plicate and repeated three times. Mean thre- 
shold cycles (CT) were calculated by averaging 
the technical replicates for each experiment 
and then averaging the mean replicate CT 
across the three runs. Quadruplicates with  
a standard deviation greater than 0.50 were 
eliminated, and these assays were repeated. 
miR-21 expression was normalized to that of 
RNU6B (ΔCT) for each tissue. Relative expres-
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sion and fold differences were determined by 
comparing normalized expression levels be- 
tween tissues (ΔΔCT) using the 2-ΔΔCT method. 
Statistical significance was determined using  
a Student’s t-test assuming unequal variance.

Western blotting

Cells were lysed in RIPA lysis buffer with pro-
teinase inhibitor. Total cellular proteins were 
separated by SDS-PAGE and transferred to 
PVDF membranes, which were probed with 
antibodies against Slug (1:200, Abcam, Sh- 
anghai, China), PUMA (1:200, Cell Signaling, 
Shanghai, China), E-cadherin (1:200, Santa 
Cruz Biotechnology, Shanghai, China) and β- 
actin (1:10000, Sigma, Shanghai, China) over-
night at 4°C followed by horseradish pero- 
xidase-labeled goat-anti-rabbit IgG (1:6000, 
Abcam, Cambridge, UK) for 1 h. Signals were 
detected by enhanced chemiluminescence. β- 
actin was used as a loading control.

sion assays were performed in a similar fash-
ion, using membrane invasion culture system 
chambers containing a polycarbonate filter with 
10-μm pores coated with a collagen-based 
matrix. For invasion assays, the time frame  
of incubation was extended to overnight (ie, 
approximately 20 hours).

Statistical analysis

All data are shown as mean ± SD. Statisti- 
cal significance was determined by a Student 
t-test using the SPSS 17.0 software pack- 
age. P<0.05 was considered statistically sig- 
nificant.

Results

Effect of propofol on survival and apoptosis of 
PANC-1 cells

PANC-1 cells were first treated with propofol  
(1, 5 or 10 μg/mL) for 48 h. Cell survival was 

Figure 1. Propofol inhibits cell survival and proliferation, and induces apopto-
sis, in PANC-1 cells. PANC-1 cells were treated with 5 and 10 μg/mL propofol 
for 48 h or 10 μg/mL propofol for 12, 24 or 36 h. A. Propofol inhibits cell 
survival by a LDH toxicology assay; B. Propofol inhibits cell proliferation by a 
BrdU cell proliferation assay; C. Propofol induces cell apoptosis by a flow cyto-
metric assay. Data are represented as the means ± SD of three independent 
experiments. *P<0.05, **P<0.01 compared with control groups.

Cell migration and invasion 
assays

Motility in the absence of  
a chemoattractant was de- 
termined in membrane inva-
sion culture system cham- 
bers containing a polycarbon-
ate filter with 10-μm pores 
coated with 0.1% gelatin. Un- 
treated PANC-1 cells (7.5 × 
104) or PANC-1 cells trans- 
fected with miR-21 or NC, 
PUMA or E-cadherin siRNA,  
or pcDNA3.1 Slug cDNA or 
control pcDNA3.1 for 24 h, 
then treated with propofol  
(1, 5 or 10 μg/mL) for 48 h  
or 10 μg/mL propofol for 12, 
24 or 36 h were seeded in 
each upper well, incubated at 
37°C for 6 h in RPMI-1640 
medium containing 10% FBS, 
and subsequently process- 
ed by fixation with staining. 
The number of cells that mi- 
grated to the lower side of  
the membrane was deter-
mined by examining five ran-
dom fields (at 100 × mag- 
nification) per test condition. 
Triplicate samples were mea-
sured for each condition and 
results were averaged. Inva- 
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assessed by lactate dehydrogenase (LDH) cell 
toxicology assays. As shown in Figure 1A, LDH 
release increased in a dose-dependent man- 
ner with propofol treatment (P<0.05 and P< 
0.01, respectively), suggesting that propofol 
decreased cell viability in a dose-dependent 
way.

The effect of propofol on proliferation of  
PANC-1 cells was detected by BrdU cell prolif-
eration assay. As shown in Figure 1B, treat-
ment of PANC-1 cells with propofol (1, 5 or 10 
μg/mL) for 48 h resulted in dose-dependent 
cell proliferation inhibition, which agreed with 
the results of the LDH assay (P<0.05 and P< 
0.01, respectively).

Next, we examined whether the inhibition of 
cell survival by propofol was accompanied by 
the induction of apoptosis. PANC-1 cells were 
treated with propofol (1, 5 or 10 μg/mL) for 48 
h, and cell apoptosis was measured by flow 
cytometry assay. The induction of apoptosis 
was found to be dose-dependent (P<0.05 and 
P<0.01; Figure 1C), suggesting that propofol 
could induce apoptosis of PANC-1 cells.

We also treated PANC-1 cells with 10 μg/mL 
propofol for 12, 24 or 36 h. Propofol treatment 
also inhibited proliferation and induced apopto-
sis in a time-dependent manner (Figure 1A-C). 

Effect of propofol on invasion and migration of 
PANC-1 cells

To determine the effect of propofol on the 
migration and invasion of PANC-1 cells, PANC-1 
cells were treated with 1, 5 or 10 μg/mL propo-
fol for 48 h, and then transwell migration and 
matrigel invasion assays were performed. Cells 
in the lower chamber of the transwell were obvi-
ously reduced when PANC-1 cells were treated 
with propofol as compared to untreated cells 
(Figure 2A, 2B), indicating that propofol inhi- 
bited both the migration and invasion of PANC-
1 cells in a dose-dependent manner.

To determine whether propofol inhibits migra-
tion and invasion of PANC-1 cells in a time-
dependent manner, PANC-1 cells were treated 
with 10 μg/mL propofol for 12, 24 or 36 h, 
respectively. Propofol treatment inhibited mi- 
gration and invasion of PANC-1 cells in a time-
dependent fashion (Figure 2A, 2B).

Upregulation of PUMA by propofol correlates 
with apoptosis induction in PANC-1 cells

To determine the role of PUMA in propofol-
induced apoptosis, PANC-1 cells were treat- 
ed with 1, 5 or 10 μg/mL propofol for 48  
h. PUMA protein was induced by propofol in  
a dose-dependent manner (Figure 3A). When 
the PANC-1 cells were treated with 10 μg/ 
mL propofol for 12, 24 or 36 h, expression  
of PUMA protein was increased in a time-de- 
pendent fashion (Figure 3A).

To determine whether PUMA is essential for 
propofol-induced apoptosis and growth inhibi-
tion, PANC-1 cells were transfected with PUMA 
siRNA for 24 h, then treated with 1, 5 or 10  
μg/mL propofol for 48 h or 10 μg/mL propofol 
for 12, 24 or 36 h. As shown in Figure 3A, 
expression of PUMA protein in PANC-1 cells  
was inhibited by PUMA siRNA transfection fol-
lowed by propofol treatment. In PUMA siRNA 
transfected PANC-1 cells, the cell apoptosis 
rate was dose- and time-dependent decrea- 
sed with propofol treatment (Figure 3B), sug-
gesting that propofol induced PUMA-mediated 
apoptosis. In addition, cell viability and prolif-
eration were significantly decreased in PUMA 
siRNA transfected PANC-1 cells as compared  
to PANC-1 cells treated with propofol alone 
(Figure 3C, 3D).

Propofol-induced E-cadherin inhibits the mi-
gration and invasion of PANC-1 cells

To determine the role of E-cadherin in propofol-
induced inhibition of migration and invasion of 
PANC-1 cells, PANC-1 cells were transfected 
with E-cadherin siRNA for 24 h, then treated 
with 1, 5 or 10 μg/mL propofol for 48 h or 10 
μg/mL propofol for 12, 24 or 36 h. As shown in 
Figure 4A, E-cadherin protein expression was 
inhibited in PANC-1 cells by E-cadherin siRNA 
transfection followed by propofol treatment.  
In addition, knockdown of E-cadherin revers- 
ed propofol-induced migration and invasion of 
PANC-1 cells (Figure 4B, 4C). Propofol inhibi- 
ted the migration and invasion of PANC-1 cells 
via E-cadherin upregulation.

Both PUMA and E-cadherin activation by pro-
pofol is mediated by Slug

We then analyzed the mechanism of PUMA and 
E-cadherin induction by propofol in PANC-1 
cells. Treatment with 1, 5 or 10 μg/mL propo- 
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Figure 2. Propofol inhibits migration and invasion of PANC-1 cells. PANC-1 cells were treated with 5 and 10 μg/mL propofol for 48 h or 10 μg/mL propofol for 12, 24 
or 36 h. A. Transwell migration assays; B. Matrigel invasion assays. Migrated or invaded cells were counted in five random fields of each filter under a microscope 
using 200 × magnification. The scale bar indicates 50 μm. Bars represent the average number of migrated or invaded cells. *P<0.05, **P<0.01 compared with 
control groups.
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fol for 48 h or 10 μg/mL propofol for 12, 24  
or 36 h downregulated Slug expression in a 
dose- and time-dependent manner, followed  
by increasing PUMA and E-cadherin express- 
ion (Figure 5). However, Slug overexpression  
by Slug cDNA transfection led to decreasing 
expression of PUMA and E-cadherin (Figure 5), 
as well as decreasing apoptosis and increasing 
invasion ability (data not shown), suggesting 
that PUMA and E-cadherin induction by propo-
fol is due to Slug inhibition. 

miR-21-dependent Slug inactivation mediates 
PUMA and E-cadherin induction by propofol

miR-21 mRNA was overexpressed in PANC-1 
cells detected by qRT-PCR (Figure 6A). Treat- 
ment with 1, 5 or 10 μg/mL propofol for 48  
h or 10 μg/mL propofol for 12, 24 or 36 h 
strongly suppressed miR-21 mRNA express- 
ion in a dose- and time-dependent manner 
(Figure 6A), followed by decreased Slug ex- 
pression and increased PUMA and E-cad- 
herin expression (Figure 6B). However, treat-
ment of miR-21 rescued miR-21 mRNA ex- 
pression (Figure 6B), promoted Slug expres-
sion and inhibited PUMA and E-cadherin ex- 
pression (Figure 6B), and reversed propofol-in- 
duced apoptosis and invasion inhibition (data 
not shown). These results suggest that miR- 
21 inhibition mediates the inactivation of Slug 
and activation of PUMA and E-cadherin by pro-
pofol. Together, these results demonstrate that 
PUMA and E-cadherin induction by propofol  
is mediated by miR-21 inhibition and subse-
quent Slug inactivation.

Discussion

Propofol is an intravenous sedative-hypnotic 
agent administered to induce and maintain 
anesthesia. It has been recently revealed to 
have anticancer properties including direct and 
indirect suppression of the viability and prolif-
eration of cancer cells by promoting apoptosis 
in some cancer cell lines [29-31]. Some studies 
have found that propofol increased migration 
of breast cancer cells [32]. However, clinically 

relevant concentrations of propofol decreased 
the invasion ability of some human cancer cells 
[33, 34]. Thus, we set a concentration range  
of propofol (1, 5 or 10 μm) to test its effect on 
the behavior of PANC-1 cells. Treatment with 
propofol (1-10 μM) reduced cell death and leak-
age in a dose- and time-dependent manner, 
which accords with reports that propofol has a 
cytoprotective effect in myocardial cells [35]. In 
addition, propofol treatment inhibited invasion 
and migration of PANC-1 cells in vitro. The 
mechanisms by which propofol induces apopto-
sis and inhibits invasion of cancer cells are not 
well understood.

One previous study has demonstrated that 
whether inhibition of p53-upregulated modula-
tor of apoptosis (PUMA) induction by propofol 
contributes to neuroprotection from cerebral 
ischemic cell death through both autophagic 
and apoptotic mechanisms [36]. Li et al. have 
found that propofol inhibits H2O2-induced injury 
in cardiac H9c2 cells via decreasing NF-κB acti-
vation and PUMA expression [37], suggesting 
that propofol has as anti-apoptotic effect by 
inhibiting PUMA expression. However, propofol 
was also found to induce apoptosis by activa-
tion of caspase-8 and caspase-9 in hepato- 
cellular carcinoma cells [38]. In pancreatic can-
cer cells, treatment of cells with propofol in- 
duced apoptosis and potentiated gemcita- 
bine-induced killing by downregulation of nucle-
ar factor-κB [39]. In addition, propofol also in- 
hibited proliferation and induced apoptosis of 
lung cancer H460 cells in vitro and in vivo [40]. 
In this study, we tested the role of PUMA in  
propofol-induced apoptosis and growth inhibi-
tion. Propofol increased PUMA expression in a 
dose- and time-dependent manner. Targeting 
PUMA by siRNA transfection inhibited propo- 
fol-induced apoptosis and growth inhibition, 
suggesting that PUMA upregulation contribu- 
ted to propofol-induced apoptosis.

E-Cadherin is a tight junction protein that is dif-
ferentially expressed in compact and diffused 
tumors [41, 42] and plays a critical role in tumor 
metastasis. Accumulating bodies of evidence 
indicate that E-cadherin acts as an invasion 

Figure 3. Effect of PUMA on propofol-induced apoptosis in PANC-1 cells. PANC-1 cells were treated 1, 5 or 10 μg/mL 
propofol for 48 h or 10 μg/mL propofol for 12, 24 or 36 h or transfected with PUMA siRNA for 24 h, then treated pro-
pofol according to the above. A. PUMA protein expression was detected by western blot assay; B. Propofol induces 
cell apoptosis by a flow cytometric assay; C. Propofol inhibits cell viability by a LDH toxicology assay; D. Propofol 
inhibits cell proliferation by a BrdU cell proliferation assay. Data are represented as the means ± SD of three inde-
pendent experiments. *P<0.05 compared with control groups.
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Figure 4. Effect of E-cadherin on propofol-induced migration and invasion of PANC-1 cells. PANC-1 cells were treated 1, 5 or 10 μg/mL propofol for 48 h or 10 μg/
mL propofol for 12, 24 or 36 h or transfected with E-cadherin siRNA for 24 h, then treated propofol according to the above. A. E-cadherin protein expression was 
detected by a western blot assay; B. Transwell migration assays; C. Matrigel invasion assays. Bars represent the average number of migrated or invaded cells. 
*P<0.05 compared with control groups.
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Figure 5. Effect of Slug on propofol-induced PUMA and E-cadherin expression. PANC-1 cells were treated 1, 5 or 10 μg/mL propofol for 48 h or 10 μg/mL propofol 
for 12, 24 or 36 h or transfected with Slug cDNA for 24 h, then treated propofol according to the above. Slug, PUMA and E-cadherin protein expression was detected 
by a western blot assay.
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Figure 6. Effect of miR-21 on propofol induced PUMA and E-cadherin expression. PANC-1 cells were treated with 1, 5 or 10 μg/mL propofol for 48 h or 10 μg/mL 
propofol for 12, 24 or 36 h or transfected with miR-21 for 24 h, then treated propofol according to the above. A. Relative expression of miR-21 as determined by 
qRT- PCR. B. Slug, PUMA and E-cadherin protein expression was detected by western blot assay. *P<0.05 compared with control groups.
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suppressor of various epithelial malignancies. 
Loss of E-cadherin expression is emerging as 
one of the most common indicators of EMT 
onset. Furthermore, reduced expression of E- 
cadherin has been reported in various can- 
cers and is associated with tumor progression 
and metastasis [43]. In this study, we test the 
role of E-cadherin on propofol-induced inva- 
sion and migration of PANC-1 cells. Propofol 
induced E-cadherin expressionin a dose- and 
time-dependent manner. Targeting E-cadherin 
by siRNA transfection inhibited propofol-in- 
duced invasion and migration, suggesting that 
E-cadherin upregulation contributed to propo-
fol-induced invasion and migration of PANC-1 
cells.

Apoptosis provoked by propofol requires ac- 
tivation of PUMA, and invasion inhibition by  
propofol requires activation of E-cadherin, but 
how propofol regulates PUMA and E-cadherin 
remains largely unknown. Slug is a zinc finger 
transcriptional repressor that promotes carci-
noma cell invasion, stemness, and survival. It  
is well known that Slug negatively regulates 
PUMA and E-cadherin expression [19, 20]. In 
this study, we found that propofol inhibited  
Slug expression in PANC-1 cells in a dose-  
and time-dependent manner. However, over- 
expression of Slug by Slug cDNA transfection 
reversed propofol-induced PUMA and E-cad- 
herin expression, suggesting that Slug down-
regulation by propofol treatment contributes  
to Slug-dependent PUMA and E-cadherin up- 
regulation of PANC-1 cells.

Previous studies have demonstrated that miRs 
play important roles in cancer development 
and progression by acting as activators or 
inhibitors [44]. More recently, several special-
ized miRs termed metastamirs have been im- 
plicated in the regulation of tumor metastasis 
and proliferation. Slug, E-cadherin and PUMA 
arereported to be regulated by a subset of 
miRs, such as miR-9, miR-203, miR-128, miR-
128, miR-296, and miR-21 [45-53]. In the pre- 
sent study, propofol inhibited miR-21 mRNA 
expression in PANC-1 cells in a dose- and time-
dependent manner. miR-21 mRNA re-expres-
sion by miR-21 transfection reversed Slug ex- 
pression and downregulated PUMA and E-cad- 
herin in PANC-1 cells. Taken together, these 
observations indicate that miR-21-dependent 
Slug inactivation mediates PUMA and E-cad- 
herin in duction by propofol, indicating that  

propofol targets themiR-21-Slug pathway to 
inhibit invasion and induce apoptosis in pan-
creatic cancer. 

In conclusion, we found that propofol down- 
regulated miR-21 expression in PANC-1 cells, 
which inhibited Slug activation and increased 
downstream PUMA and E-cadherin express- 
ion, leading to the inhibition of cell growth and 
invasion of PANC-1 cells.
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