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Abstract: The aim of this study was to investigate the in vivo and in vitro effects of miR-665 on sevoflurane anes-
thesia-induced cognitive dysfunction. SH-SY5Y cells and male SD rats were treated with sevoflurane to simulate 
anesthesia-induced cognitive dysfunction. The cells and rats both were transfected with a miR-665 mimic, inhibitor, 
scramble, IGF-2 siRNA, or treated with P13K/Akt inhibitor LY294002. The cell apoptosis, autophagy, growth related 
proteins, and mRNA levels were measured using different methods. The motor performance was assessed using 
the Morris water maze (MWM) test. Finally, the differences were statistically analyzed. It was noted that sevoflurane-
induced miR-665 downregulation accompanied with the upregulation of IGF-2 in vivo and motor deficits in vitro. 
Moreover, sevoflurane also induced hippocampal neuroapoptosis; reduced regular autophagy; increased Bax/Bcl-
2 ratio; decreased the expression of Beclin 1, PSD95, and p-CREB; and activated P13K/Akt signaling pathway. 
However, the treatment by miR-665 mimics significantly reversed all the molecular changes and improved motor 
performance. Our data demonstrate the neuroprotective effect of miR-665 against sevoflurane anesthesia-induced 
cognitive impairment. This study suggests that miR-665 might be explored as a potential target of therapy for 
sevoflurane-induced cognitive impairment.
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Introduction

Old-aged individuals with Alzheimer’s disease 
and those have received anesthesia or under-
gone surgery usually suffer from cognitive dys-
function or impairment [1, 2]. Elderly people 
with nerve diseases are always a high-risk  
population for cognitive dysfunction [3, 4]. Ab- 
normal alterations and accumulation of gene- 
tic or non-genetic elements are the main in- 
ducements of cognitive dysfunction and im- 
pairments; therefore, the complete therapy of 
cognitive impairments in elderly people is an 
arduous process with a limited success [5]. 

Several lines of evidence have shown that cog-
nitive impairments caused by surgical anesthe-
sia or brain trauma are associated with dysreg-
ulation of signaling pathways, such as an inac-
tivation of P13K/Akt and extracellular signal-

regulated kinase 1/2 (ERK1/2) signaling path-
ways [6, 7] and enhanced neuroapoptosis or 
neurotoxicity resulting by these dysregulations 
[7, 8]. As reported earlier, neuroapoptosisis 
also linked to abnormal alterations of postsyn-
aptic density protein (PSD)-95 [9], cyclic ade-
nosine monophosphate (cAMP)-response ele-
ment binding protein (CREB) [10], brain-derived 
neurotrophic factor (BDNF) [11], and dysregu- 
lation of microRNAs (miRNAs) including miR-
34a [12], miR-383 [13], and miR-665 [14]. 

miRNA are small noncoding RNAs. They play  
an important role in metabolism, thus their 
abnormal transcription results in certain dis-
eases [15, 16]. Many of these miRNAs have 
been used as a specific biomarker for diseas- 
es, such as miR-21 and miR-383 in lung can- 
cer [17, 18], miR-210 in congestive heart fail- 
ure and glioma [19, 20], and miR-665 in con-
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gestive heart failure [21]. Recently, numerous 
miRNAs have been identified to be associated 
with anesthesia-related cognitive dysfunction 
such as miR-665 [14, 22], miR-572 [23], and 
miR-181 [24]. Therefore, miRNA can be target-
ed for potential therapeutic approaches for the 
related diseases [24, 25]. For example, the 
downregulation of miR-383 promoted cancer 
cell proliferation and invasion [26], and miR-
665 expression showed the neuroprotective 
effect on propofol-induced cognitive dysfunc-
tion in a rat model [14]. However, there is no 
evidence showing the effect of sevoflurane 
anesthesia-induced cognitive impairment on 
miR-665 expression and the associated me- 
chanism.  

In order to investigate the effect of miR-665 
expression on sevoflurane-induced learning 
and memory impairment, we established a  
cognitive impairment rat model using sevoflu-
rane. The effects of miR-665 expression on  
the sevoflurane-anesthetized cognitive impair-
ment were studied using constructed lentivi- 
rus vectors expressing miR-665 mimics. Neuro- 
apoptosis, the expression of related proteins, 
rat learning and memory ability, and the cogni-
tive performance were monitored to glean more 
information on the mechanism of sevoflurane-
anesthetized cognitive impairment and the po- 
tential of targeting miR-665 for a therapeutic 
strategy. 

Materials and methods

Cell line and cell culture

Human neuronal SH-SY5Y neuroblastoma cells 
were procured from ATCC (Manassas, VA, USA) 
and cultured in Dulbecco’s Minimum Essential 
Medium (DMEM) (Sigma, St. Louis, MO, USA), 
containing 10% fetal bovine serum (FBS; Sig- 
ma, St. Louis, MO, USA) and 100 U/mL penicil-
lin (Sigma, St. Louis, MO, USA) at 37°C with 5% 
CO2, using the 96-well plates (BD Biosciences, 
Rockville, MD). 

Cell transfection

The SH-SY5Y cells were pretreated with 5, 10, 
20, and 30 μM sevoflurane (AbbVie Inc., North 
Chicago, IL, USA) for 30 min for in vitro experi-
ments [27]. In addition, the cells were pretre- 
ated with PI3K/Akt pathway inhibitor LY294- 
002 (Sigma, St. Louis, MO, USA) for 30 min as 

described previously [28]. The cells were plated 
in 6-well plates (BD Biosciences, Rockville, 
MD). MiR-665 inhibitor/mimic/scramble (Am- 
bion, Foster City, CA, USA), and chemical siRNA 
sequences against insulin-like growth factor 2 
(IGF-2, Ambion, a miR-665 target predicted 
using Target Scan Human: http://www.tar-
getscan.org/vert_71/) were used for cell trans-
fection. The transfections of these molecules 
were performed using Lipofectamine 2000 (In- 
vitrogen, Carlsbad, CA) or lentivirus. The SH- 
SY5Y cells transfected with scramble or Lipo- 
fectamine 2000 were considered as controls. 

Animal model

All protocols of animal experiments were re- 
viewed and approved by the Institutional Ani- 
mal Care and Use Committee at the Affiliated 
Cancer Hospital of Zhengzhou University, He- 
nan Cancer Hospital Anesthesiology, Henan, 
China. Before the experiments, Sprague-Daw- 
ley rats (male, 250 ± 10 g, seven-week-old; 
Vital River Laboratory Animal Technology Co. 
Ltd., Beijing, China) were housed under a  
controlled 12 D:12 L cycle condition for seven 
days with ad libitum access to food and water. 
The rats were then randomly divided into two 
groups: a control group receiving regular air 
inhalation for 6 h and a sevoflurane group 
receiving 2.5% sevoflurane at 600 μg·kg-1·min-1 

in 100% O2 at the identical conditions for 6  
h. The animals were allowed for recovery for 
seven days after the anesthesia. For animal 
transfections, lentivirus-miR-665 inhibitor/mi- 
mic/scramble and lentivirus-siRNA-IGF-2 were 
given intracerebroventricularly into the left lat-
eral cerebral ventricles through a pre-drilled 
skull hole within 10 min after sevoflurane ad- 
ministration [29].

Morris water maze task

The Morris water maze (MWM) test was used to 
examine spatial learning and memory of rats 
[30]. In brief, each rat was forced to finish a 
swim test every day subsequently from each of 
the four quadrants per day for five days from 
each of the four quadrants in a circular water 
pool (colored with black ink, 100 cm in diame-
ter, 50 cm in height) with a 30-cm depth of 
water and a hidden circular platform (12 cm in 
diameter) 2 cm below the water surface. The 
animals were forced to finish swim to find the 
hidden platform within a maximum of 60 s. The 
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time each rat spent to find the hidden platform 
for the first time on day 5 of the trials (latency) 
was recorded to evaluate the learning ability of 
the rats [30]. A video camera on the ceiling was 
used to record the performances of the rats 
related to swim ability. The time taken to find 
the hidden platform (latency, s), path length 
(cm), and swimming speeds (cm·s-1) were ana-
lyzed using image tracking software (2020 Plus 
Tracking System; HVS Image).

qRT-PCR

In order to carry out the qRT-PCR analysis, to- 
tal RNA was extracted from the cells and rat 
hippocampus tissues using Trizol (Invitrogen, 
Carlsbad, CA, USA) after seven days of the last 
injection of MWM task. The single-strand cDNA 
was then synthesized and the expression le- 
vels of genes and miRNAs were determined by 
using a Bio-Rad SsofastEvaGreenSupermixkit 
(Bio-Rad Laboratories, Hercules, CA, USA) with 
Bio-Rad IQ5 real-time PCR system (Bio-Rad). 
Primers for qRT-PCR (Sangon, Shanghai, China) 
are listed in Table 1. β-Actin and U6 were used 
as the internal reference genes for mRNA and 
miRNA detection, respectively. 

Western blotting

The Western blotting was performed using an- 
tibodies specific for postsynaptic density-95 
(PSD-95, 1:1000 dilution, Cell Signaling Tech- 
nology, CST, Danvers, MA, USA), cyclic adenos-
ine monophosphate (cAMP)-response element 
binding protein (CREB, CST, 1:1000 dilution), 
and phospho-CREB (p-CREB, CST, 1:1000 dilu-
tion), p-PI3K (CST, 1:1000 dilution), p-Akt (CST, 
1:1000 dilution), PI3K (CST, 1:5000 dilution), 
Akt (CST, 1:1000 dilution) and GAPDH (1:2000 
dilution, Sizhengbo, Beijing, People’s Republic 
of China). For the Western blot, the mice were 
killed and hippocampus tissue proteins were 
extracted, and the cellular proteins were pre-
pared as described previously. Protein concen-
trations were determined by Bio-Rad DC pro-
tein assay, and subsequently, the proteins were 
separated on 12% SDS-PAGE. The protein blots 
were transblotted onto polyvinylidene difluo- 
ride membranes (PVDF; Millipore, Billerica, MA, 
USA), which were then blocked and incubated 
with the specific primary antibodies at 4°C 
overnight, and HRP-conjugated secondary anti-
bodies for 1 h. Immunoreactive protein bands 
were visualized by a chemiluminescence reac-

Table 1. Primer list used in this study for qRT-PCR detection
Gene names Primers Sequences (5’-3’)
miR-665 Forward 5’-ACCAGGAGGCTGAGG-3’

Reverse 5’-GAGCAGGCTGGAGAA-3’
RT primer 5’-GCGCGTGAGCAGGCTGGAGAAATTAACCACGCGCTAAGGG-3’

Bcl-2 Forward 5’-GGTGAACTGGGGGAGGATTG-3’
Reverse 5’-GCATGCTGGGGCCATATAGT-3’

Bcl-xL Forward 5’-GGACAGCATATCAGAGCTTTGAACA-3’
Reverse 5’-TTGTCTACGCT TTCCACGCA-3’

Bax Forward 5’-GGCTGGACACTGGACTTCCT-3’
Reverse 5’-GGTGAGGACTGGAGCCACAA-3’

Beclin 1 Forward 5’-GAGAGGAGCCATTTATTGAAAC-3’
Reverse 5’-CTCCCCAATCAGAGTGAAGC-3’

PSD-95 Forward 5’-TAGGGCCCTGTTTGATTACG-3’
Reverse 5’-TGGCCTTTAACCTTGACCAC-3’

Caspase-3 Forward 5’-AATTCAAGGGACGGGTCATG-3’
Reverse 5’-GCTTGTGCGCGTACAGTTTC-3’

IGF-2 Forward 5’-GAGAACCTTCCAGCCTTT-3’
Reverse 5’-GAGATGAGAAGCACCAACA-3’

GAPDH Forward 5’-GGGCAAGGTCATCCCTGAGCTGAA-3’
Reverse 5’-GAGGTCCACCACCCTGTTGCTGTA-3’

U6 Forward 5’-CTCGCTTCGGCAGCACA-3’
RT and reverse 5’-GTGCA GGGTCCGAGGT-3’
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tion, and the data were analyzed using the  
Bio-Rad Quantity One software (Bio-Rad, Rich- 
mond, CA, USA).

Apoptosis assay

Apoptosis in the transfected cells was dete- 
cted using an annexin V-Cy5-labeled apopto- 
sis detection kit (Invitrogen) and analyzed by 
flow cytometry [31]. Briefly, after being trans-
fected with miR-665 mimic/inhibitor/scramble 
and siRNA-EGF-2 or control for 24 h, the cells 
were harvested, pelleted, and resuspended in 
the binding buffer containing annexin V-Cy5 
(1:1000) and propidium iodide (PI) for 10 min. 
Then the cells were analyzed using a FACS 
Calibur flow cytometer (Becton-Dickinson, CA, 
USA). Annexin V-Cy5 positive and PI-negative 

test and ANOVA, respectively. P < 0.05 was 
considered statistically significant. The plots 
were made using GraphPad Prism 6.0 (Graph- 
Pad Software Inc, La Jolla, CA, USA).

Results

Sevoflurane inhibited miR-665 expression in 
vitro

SH-SY5Y cells were treated with 5, 10, 20,  
and 30 μM sevoflurane and the expression of 
miR-665 was detected using qRT-PCR. The 
expression level of miR-665 was decreased in 
the sevoflurane-treated cells in a concentra-
tion-dependent manner (Figure 1A). Sevoflu- 
rane at 10, 20, and 30 μM concentrations sig-
nificantly inhibited miR-665 expressions (P < 

Figure 1. Sevoflurane inhibits miR-665 expression in SH-SY5Y cells. A. SH-
SY5Y cells treated with 5, 10, 20, and 30 μM sevoflurane. B. SH-SY5Y cells 
treated with 20 μM sevoflurane and then transfected with miR-665 mimic, 
inhibitor, and scramble for 24 h. The expression level of miR-665 was de-
tected using qRT-PCR. * and **indicate difference at P < 0.05 and P < 0.01, 
vs. control, respectively. #Indicates difference at P < 0.05 vs. sevoflurane 
control.

cells (Annexin V+/PI-, early 
apoptotic cells) were consid-
ered to be apoptotic cells.

Dual-luciferase reporter 
analysis

The reporter vectors of  
pGL3-IGF-2-3’-UTR were syn-
thesized (Sangon Biotech, 
Shanghai, China) and dual-
luciferase (Firefly and Renil- 
la) reporter plasmids IGF-2-
WT and IGF-2-Mut, containing 
the wild-type and mutant 
IGF-2 putative 3’-UTR-binding 
site, respectively, were con-
structed. After cell transfec-
tion for 48 h, luciferase acti- 
vities were measured using 
the Promega Dual-luciferase 
Reporter Assay kit (Promega, 
Madison, WI). Fold induction 
of firefly luciferase activity 
was normalized to Renilla-
luciferase activity for each 
sample [32].

Statistical analysis

All statistical analyses were 
performed using SPSS 19.0 
software (SPSS Inc., Chicago, 
USA). All data were express- 
ed as the mean ± standard 
deviation (SD). The differenc-
es between two groups and 
among more than two groups 
were analyzed using Tukey’s 
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Figure 2. MiR-665 mimic exhibits the neuroprotective effect. A. Cell apoptosis detected using annexin V-Cy5-labeled 
Apoptosis Detection Kit and analyzed by flow cytometry. Annexin V+/PI-, normal cells; Annexin V+/PI-, early apoptotic 
cells; Annexin V+/PI+, late apoptotic cells; Annexin V-/PI+, necrotic cells; B, C. The expression of the cell apoptosis 
related protein in SH-SY5Y cellstransfected with different kinds of miR-665 vectors; D-F. mRNA and protein expres-
sion of the cell autophagy related proteins in SH-SY5Y cells; G-I. mRNA and protein expression of the neuron growth 
related protein in SH-SY5Y cells. * and **indicate difference at P < 0.05 and P < 0.01, vs. control, respectively. # 
and ##indicate difference at P < 0.05 and P < 0.01, vs. sevoflurane, respectively.
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0.05). Subsequently, a concentration of 20 μM 
to treat SH-SY5Y cells for the in vitro experi-
ment was selected. Next, SH-SY5Y cells pre-
treated with sevoflurane were transfected with 
miR-665 mimic, inhibitor, and scramble to 
delineate the miR-665 dysregulation related 
mechanism (Figure 1B).

MiR-665 mimic exhibits neuroprotective effect

An apoptosis assay was employed to confirm 
the overexpression of miR-665 inhibited se- 

voflurane-induced apoptosis of SH-SY5Y cells 
(Figure 2A-C), attenuated sevoflurane-inhibited 
cell autophagy (Figure 2D-F), and promoted 
SH-SY5Y cell growth (Figure 2G-I). SH-SY5Y 
cells transfected with miR-665 mimic signifi-
cantly reduced Annexin V+/PI- cell percentage 
(early apoptotic cells), upregulated Bcl-2 and 
Bcl-xL expression, and down inhibited Bax and 
Caspase-3 expression in sevoflurane-treated 
SH-SY5Y cells. Furthermore, the miR-665 mi- 
mic clearly triggered the expression of auto- 
phagy factors including Beclin-1 and LC3 II/ 

Figure 3. Neuroprotective effect of miR-665 by targeting IGF-2. (A) IGF-2 predicted as the target of miR-665 using 
TargetScan Human (A: http://www.targetscan.org/vert_71/); (B) Expression of IGF-2 in the SH-SY5Y cells treated 
with or without sevoflurane; (C) IGF-2 expression in sevoflurane-treated SH-SY5Y cells transfected with or without 
the silenced IGF-2 vector; (D) Dual-luciferase reporter analysis; (E, F) Expression of IGF-2 in the cells transfected with 
different kinds of miR-665 vectors; (G, K) The expression, in the SH-SY5Y cells, of the genes related to apoptosis 
(G), autophagy (H, I), and synaptic growth (J, K) by qRT-PCR and Western blotting. * and **indicate difference at P 
< 0.05 and P < 0.01, vs. control, respectively. # and ##indicate difference at P < 0.05 and P < 0.01, vs. sevoflurane 
or inhibitor, respectively.
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LC3 I ratio in sevoflurane-treated SH-SY5Y 
cells. Finally, we analyzed the effect of miR- 
665 mimic on the development of neurons  
and revealed that miR-665 expression remark-
ably upregulated the expression of PSD-95  
and pCREB. An administration of the inhibitor 
intensified the influence of sevoflurane on cell 
functions and the expression of the above fac-
tors. No differences were found in the expres-
sion and cellular performance among the cells 
treated with the scramble. This demonstrated 
that miR-665 benefits in preventing sevoflu-
rane-induced neuron apoptosis, autophagy re- 
cession, and synaptic growth inhibition. 

Neuroprotective effect of miR-665 by targeting 
IGF-2

We predicted IGF-2 as one of the miR-665 tar-
gets using TargetScan Human (Figure 3A), and 
subsequently, using the Firefly/Renilla dual-
luciferase reporter systems, determined that 
IGF-2 is a negative target of miR-665. In con-
trast to the downregulated miR-665 expres-
sion, IGF-2 was triggered by sevoflurane treat-
ment and miR-665 inhibitor, and inhibited by 
miR-665 mimic (Figure 3B and 3C). Using the 

dual-luciferase reporter assay, it was revealed 
that miR-665 administration reduced firefly-
luciferase activity ratio in the cells transfected 
with pGL3-IGF-2-WT-3’-UTR vector (Figure 3D). 
Further, the cotransfection experiments with 
IGF-2 siRNA and miR-665 inhibitor into SH- 
SY5Y cells showed an upregulation of the Bcl- 
2, Bcl-xL, Beclin-1, LC3 II, PSD-95, and p-CREB 
expressions, and a downregulation of the Bax, 
Caspase-3 and LC3 I expressions, compared  
to the transfection of miR-665 inhibitor alone 
(Figure 3E-I). These data indicated that miR-
665 regulates the neuron apoptosis, autopha-
gy, and synaptic growth by negatively targeting 
IGF-2.

MiR-665-mediatedneuron proliferation associ-
ates with PI3K/Akt signal pathway 

Prior studies have shown that sevoflurane is 
linked to P13k/Akt signaling pathway [6, 33].  
In order to test whether the neuroprotective 
effect of miR-665 against sevoflurane is due  
to the activation of PI3K/Akt pathway, we inhi- 
bited the P13K/Akt signaling pathway using 
LY294002-aninhibitor against P13K/Akt sig- 
naling pathway [34]. The P13K/Akt signaling 

Figure 4. MiR-665-mediated neuroprotective effect associates with PI3K/Akt signal pathway. (A) PI3K/Akt signal-
ing pathway related protein expression in the sevoflurane-treated SH-SY5Y cells; (B) Expression of the PI3K/Akt 
signaling pathway related protein in the sevoflurane-treated SH-SY5Y cells with P13K/Akt inhibitor LY294002; (C, I) 
expression of neuron apoptosis (C), autophagy (D-F), and synaptic growth (G-I) related proteins in the sevoflurane-
treated SH-SY5Y cells. * and **indicate P < 0.05 and P < 0.01, vs. control, respectively. # and ##indicate P < 0.05 
and P < 0.01, vs. sevoflurane or mimic, respectively; (J, K) MiR-665 mimic and siRNA-IGF-2 improving animal latency 
time. Male SD rats were treated with sevoflurane, miR-665 mimic, inhibitor, siRNA-IGF-2, and LY294002. Rat motor 
performance was tested using the Morris water maze task. The time taken by the rats to find the hidden platform 
(latency, s, A), and swimming speeds (cm·s-1, B) were detected. **P < 0.01, vs. Control (namely, the Sham group). # 
and ##P < 0.05 and P < 0.01, vs. cells treated with sevoflurane or mimic, respectively.
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pathway was inactivated by sevoflurane but 
activated by miR-665 mimic transfection (Fig- 
ure 4A). However, the expression of p-PI3K  
and p-Akt triggered by miR-665 mimic could  
be inhibited by LY294002. Next, we found  
that P13K/Akt inhibitor LY294002 reversed 
the miR-665 mimic induced changes in neuron 
apoptosis, autophagy recession, and the syn-
aptic growth related proteins (Figure 4C-I). 
LY294002 inhibited the miR-665 triggered in- 
crease in Bcl-2, Bcl-xL, Beclin 1, and PSD-95 
expressions and the upregulation of LC3 II/ 
LC3 I and p-CREB/CREB ratios. Furthermore, 
LY294002 attenuated miR-665-induced de- 
crease in Bax and Caspase-3 expressions (Fig- 
ure 4C). However, there were no differences in 
the expression of these factors between con-
trol cells and those treated with LY294002 
(Figure 4B-I). These data confirm that sevo- 
flurane-inhibited neuron proliferation and the 
development via miR-665 were dependent on 
PI3K/Akt signaling pathway.

MiR-665 mimic and siRNA-IGF-2 improve ani-
mal performance 

In order to delineate the neuroprotective effect 
of miR-665 against sevoflurane under in vivo 
conditions, the anesthetized rats with sevoflu-
rane were tested for their performance using 
MWM task (Figure 4). The time taken to find the 
hidden platform (latency, s) was significantly 
different among the groups (Figure 4J). The 
rats treated with sevoflurane alone or with-
miR-665 inhibitor showed a high latency time 
(P < 0.01). On the contrary, miR-665 mimic and 
siRNA-IGF-2 transfected rats showed a low 
latency time (P < 0.05). The administration of 
P13K/Akt signaling pathway inhibitor LY294- 
002 reversed the influence of miR-665 mimic 
on rats by increasing latency time. No differ-
ences were found in swimming speed among 
the rats (Figure 4K). These data showed that 
miR-665 expression canceled out the sevoflu-
rane-induced behavior deficits via IGF-2 and 
P13K/Akt signaling pathway. 

Discussion

Anesthesia-induced cognitive impairment is 
probably the most frequent type of postope- 
rative cognitive impairment, which has been 
found to be associated with miRNA dysregula-
tion [35]. This study was aimed to investigate 
the effect of miR-665 expression on sevoflu-

rane anesthesia-induced cognitive impairment. 
We confirmed the neuroprotective effect of 
miR-665 against sevoflurane anesthesia by  
targeting IGF-2 and activating P13K/Akt sig- 
naling pathways. A miR-665 mimic reversed 
the sevoflurane-induced neuroapoptosis, auto- 
phagy inhibition, and the motor deficits in rats 
by negatively targeting IGF-2 via P13K/Akt sig-
naling pathway.

In an earlier study, propofol anesthesia trig-
gered the expression of miR-665 in the hip- 
pocampal neuron of rats, which was accom- 
panied with the downregulation of Bcl-xL [14]. 
However, in our study, the sevoflurane-anes- 
thetized rats showed decreased miR-665 ex- 
pression with a decrease in Bcl-xL and Bcl-2 
expressions and increase in IGF-2 expression. 
Taken together, it can be concluded that pro- 
pofol induces upregulation of miR-665 [14], 
while sevoflurane anesthesia decreases miR- 
665 expression as observed in our study. How- 
ever, both anesthetics promoteneurons apop-
tosis and postoperative cognitive impairment  
in rats. This might due to the fact that sevo- 
flurane and propofol differentially changed the 
expression levels of miRNAs in rat hippocam-
pus [36, 37]. 

Using the TargetScan Human [38], we predict-
ed and confirmed that IGF-2 serves as the 
direct target of miR-665 (Figure 2). IGF-2 acti-
vates the PI3K/AKT pathway, and IGF-2/P13K/
Akt signaling cascade is involved in autophagy 
and apoptosis [39]. As earlier reported, IGF-2 
stimulates IGF1R and subsequently PI3K/Akt 
and MAPK/ERK signaling, and increases  
IGF-2 levels accompanied with the activation  
of ERK1/2 [40, 41]. Moreover, LY294002, a 
P13K/Akt signaling inhibitor, could prevent IGF-
2-mediated gene modulations [42, 43], demon-
strating that IGF-2 mediated PI3K/Akt signaling 
is essential for cell functions. In this study, we 
confirmed that IGF-2 is a direct target of miR-
665, suggesting the crucial roles of miR-665 in 
PI3K/Akt pathway related activities via target-
ing IGF-2. 

PI3K/Akt signaling pathway dysregulation is in- 
volved in the cognitive impairment induced by 
diabetes, neonatal hypoxic-ischemic brain da- 
mage, cardiovascular disease, and anesthesia 
[44]. The activation of PI3K/Akt signaling path-
way is crucial for neuroapoptosis and autopha-
gy, and its inhibition accelerates hippocampal 
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neuroapoptosis and reduces regular autophagy 
through targeting apoptosis-related proteins or 
interaction with other signaling pathways [45, 
46]. For instance, Yoshii et al. revealed that  
the inhibition of MAPK/ERK signaling pathway 
disrupted PSD95 expression, which is requir- 
ed for p-P13K and p-CREB participations [47]. 
Moreover, the p-CREB-dependent Bcl-2 signal-
ing, essential for cell apoptosis, is required for 
PSD95 disruption [47]. In the present study, we 
determined that sevoflurane anesthesia inhi- 
bited miR-655 was accompanied with a con-
comitant decrease in PI3K/Akt activation, Bcl-2 
and Bcl-xL expressions, and regular autopha- 
gy along with an increase in Bax and Caspase- 
3 expressions. All of these changes, however, 
could be reversed by miR-665 mimic transfec-
tion. These indicated that miR-665-mediated 
neuroprotective effect is linked with the upre- 
gulation of the Bcl-2 cascade through P13K/
Akt signaling pathway by targeting IGF-2.
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