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expression of NOX-1, * vs. other groups with different symbols (†, ‡), P<0.0001. F. Protein expression of NOX-2, * 
vs. other groups with different symbols (†, ‡), P<0.001. G. Oxidized protein expression, * vs. other groups with dif-
ferent symbols (†, ‡), P<0.0001. (Note: left and right lanes shown on the upper panel represent protein molecular 
weight marker and control oxidized molecular protein standard, respectively). M.W = molecular weight; DNP = 1-3 
dinitrophenylhydrazone. H. Protein expression of hemeoxygenase (HO)-1, * vs. other groups with different symbols 
(†, ‡), P<0.001. I. Protein expression of Nrf2, * vs. other groups with different symbols (†, ‡), P<0.0001. All statisti-
cal analyses were performed by one-way ANOVA, followed by Bonferroni multiple comparison post hoc test (n=6 for 
each group). Symbols (*, †, ‡) indicate significance at the 0.05 level. NC = normal control; TAC = transverse aortic 
constriction; LV = left ventricular.

Figure 10. SS31 therapy inhibited the protein expressions of fibrosis, apoptosis, and inflammation in LV myocardium 
by day 60 after TAC procedure. A. Protein expression of transforming growth factor (TGF)-β, * vs. other groups with 
different symbols (†, ‡), P<0.0001. B. Protein expression of phosphorylated (p)-Smad3, * vs. other groups with 
different symbols (†, ‡, §), P<0.0001. C. Protein expression of cleaved caspase 3 (c-Casp-3), * vs. other groups 
with different symbols (†, ‡), P<0.001. D. Protein expression of cleaved poly (ADP-ribose) polymerase (c-PARP), * 
vs. other groups with different symbols (†, ‡), P<0.001. E. Protein expressions of connective tissue growth factor 
(CTGF), * vs. other groups with different symbols (†, ‡), P<0.0001. F. Protein expression of tumor necrosis factor 
(TNF)- α, * vs. other groups with different symbols (†, ‡), P<0.0001. G. Protein expression of nuclear factor (NF)-κB, 
* vs. other groups with different symbols (†, ‡, §), P<0.0001. H. Protein expression of platelet derived growth fac-
tor (PDGF), * vs. other groups with different symbols (†, ‡), P<0.0001. I. Protein expression of COX-2, * vs. other 
groups with different symbols (†, ‡), P<0.0001. All statistical analyses were performed by one-way ANOVA, followed 
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positively stained cells among the three groups 
(Figure 9E-G). However, the protein expressions 
of HO-1 (Figure 9H) and Nrf2 (Figure 9I), two 
indicators of antioxidants, were progressively 
increased from NC to TAC-SS31, indicating an 
intrinsic response to the pressure overload and 
oxidative stress in the animals. 

Impact of SS31 therapy on inhibiting the pro-
tein expressions of fibrosis, apoptosis, and in 
LV myocardium by day 60 after TaC procedure 
(Figure 10)

The protein expressions of TGF-β and Smad3, 
two indices of apoptosis, were significantly 

by Bonferroni multiple comparison post hoc test (n=6 for each group). Symbols (*, †, ‡) indicate significance at the 
0.05 level. NC = normal control; TAC = transverse aortic constriction; LV = left ventricular.

Figure 11. SS31 therapy suppressed pressure overload and mitochondrial damage biomarkers and signaling of 
cellular apoptosis/death in LV myocardium by day 60 after TAC procedure. A. Protein expression of brain natriuretic 
peptide (BNP), * vs. other groups with different symbols (†, ‡), P<0.001. B. Protein expression of beta myosin heavy 
chain (β-MHC), * vs. other groups with different symbols (†, ‡), P<0.0001. C. Protein expression of α-MHC, *vs. 
other groups with different symbols (†, ‡), P<0.0001. D. Protein expression of cytosolic cytochrome C (c-Cyt C), * 
vs. other groups with different symbols (†, ‡), P<0.0001. E. Protein expression of m-Cyt C, * vs. other groups with 
different symbols (†, ‡), P<0.001. F. Ratio of phosphorylated (p)-ERK1/2 to total ERK1/2, * vs. other groups with 
different symbols (†, ‡), P<0.001. G. Ratio of p-Akt to total Akt, * vs. other groups with different symbols (†, ‡), 
P<0.0001. H. Protein expression of PI3K, * vs. other groups with different symbols (†, ‡), P<0.001. All statistical 
analyses were performed by one-way ANOVA, followed by Bonferroni multiple comparison post hoc test (n=6 for 
each group). Symbols (*, †, ‡) indicate significance at the 0.05 level. NC = normal control; TAC = transverse aortic 
constriction; LV = left ventricular.
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higher in TCA group than in NC and TAC-SS31 
groups, and significantly higher in TAC-SS31 
group than in NC group. Additionally, the protein 
expressions of cleaved caspase 3 and cleaved 
PARP, two indices of apoptosis, showed an 
identical pattern to fibrosis among the three 
groups. Furthermore, the protein expressions 
of CTGF, an indicator of collagen proliferation, 
showed an identical pattern to apoptosis 
among the three groups. Moreover, the protein 
expressions of TNF-α, NF-κB, PDGF and COX-2, 
four indicators of inflammation, also showed an 
identical pattern to apoptosis among the three 
groups. 

Impact of SS31 therapy on suppressing pres-
sure overload and mitochondrial damaged 
biomarkers and signaling of cellular apoptosis 
(Figure 11)

The protein expression of BNP and β-MHC, two 
indicators of volume/pressure overload, were 
significantly higher in TCA group than in the NC 
and TAC-SS31 groups, and significantly higher 
in TAC-SS31 group than in NC group. The pro-
tein expression of α-MHC, a negative index of 
volume/pressure overload, exhibited an oppo-
site pattern to β-MHC among the three groups. 

The protein expression of cytosolic cytochrome 
C, an indicator of mitochondrial damage, 
showed an identical pattern to BNP among the 
three groups. Conversely, the protein expres-
sion of mitochondrial cytochrome C, an indica-
tor of mitochondrial integrity, displayed an 
opposite pattern to cytosolic cytochrome C 
among the three groups. 

The protein expressions of phosphorylated (p)-
ERK1/2, p-Akt and PI3K, three signaling path-
ways of cell proliferation and apoptosis showed 
an identical pattern to cytosolic cytochrome C 
among the three groups. 

Discussion

The common pathological features of HC have 
been well recognized as heart enlargement, 
especially in the late stage of CH, an increase in 
the thickness of LV free wall and IVS as well as 
LV chamber dilatation, and increases in total 
heart weight and cardiomyocyte size [1-10, 17, 
21, 22]. One important finding in the present 
study was that, as compared with NC animals, 
the gross anatomy of heart was identified to be 
remarkably enlarged and the ratio of total heart 

weight to tibial length to be significantly 
increased in TAC animals without treatment. 
Additionally, the parameters measured by 
transthoracic echocardiography displayed the 
HC in TAC animals. Furthermore, protein expres-
sions of BNP and β-MHC were notably increased 
in the latter than in the former group. 
Importantly, these pathological findings were 
reversed in TAC animals after receiving SS31 
treatment. Accordingly, our findings not only 
proved that TAC-induced HC could be success-
fully created but also displayed effectiveness of 
SS31 therapy on attenuating CH. 

When we looked at the molecular-cellular level 
of HC, we found that the cardiomyocyte size of 
LV myocardium was significantly increased in 
TAC group than in NC group. Additionally, micro-
scopic findings showed that the pathological 
feature of disorganization of cardiomyocytes in 
the endomycardial layer became more promi-
nent in TAC animals as compared with NC ani-
mals. Furthermore, the fibrotic zone, apoptotic 
nuclei and collagen-deposition area were sub-
stantially increased in TCA animals than in NC. 
Besides, sarcomere length was markedly short-
er in TAC animals than in NC animals, indicating 
that the relaxation of myofibrils in TCA animals 
was remarkably impaired. These ultra-structur-
al findings, which were consistent with the find-
ings of our recent reports in an identical setting 
[21, 22], highlighted that the pathological 
changes of myocardium in HC were extremely 
complex. Of importance in the present study 
was that these abnormally distinctive features 
in LV myocardium were significantly reversed in 
TAC animals after receiving SS31 treatment.

Interestingly, our recent studies have shown 
that [21, 22] fibrosis and apoptosis were both 
molecular perturbations to be identified in the 
setting of HC. An essential finding in the pres-
ent study was that the protein expressions of 
apoptotic, collagen-proliferating (i.e., CTGF), 
fibrotic and mitochondrial damaged biomarkers 
were significantly higher in TAC group than in 
NC group. In this way, our findings, in addition to 
being consistent with the findings of our recent 
studies [21, 22], could partially explain why 
LVEF was reduced and LV chamber size was 
remarkably increased in TAC animals. Another 
essential finding in the present study was that 
the protein and cellular expressions of oxida-
tive stress were significantly increased, where-
as the integrity of mitochondria was impaired in 
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TAC group than in NCs. The intrinsic anti-oxi-
dant capacity was also notably reduced in TAC 
animals without than with SS31 treatment. Our 
[21, 22] and previous [17] studies have demon-
strated that oxidative stress was remarkably 
enhanced in HC. Accordingly, the findings of the 
present study, in addition to being comparable 
with the findings of prior studies [17, 21, 22], 
could, at least in part, explain why apoptosis, 
fibrosis and oxidative stress of LV myocardium 
were augmented; and once again explain why 
LV remodeling was enhanced and LV perfor-
mance was reduced. The present study 
revealed that SS31 therapy remarkably sup-
pressed these molecular-cellular perturba- 
tions. 

An association between activation of MAPK 
family and upregulation of inflammation, cyto-
kine production and cell apoptosis/death has 
been keenly investigated in setting of ischemia 
and ischemia-reperfusion injury [25-27]. A prin-
cipal finding in the present study was that, as 
compared with NC, the cellular and protein 
inflammatory biomarkers were significantly 
enhanced and signaling pathway of ERK1/2, 
PI3K/Akt were notably upregulated in TAC ani-
mals. Our findings, in addition to corroborating 
the findings of previous studies [25-27], once 
more explain for why cellular apoptosis, fibrosis 
and LV myocardium and LV remodeling were 
remarkably increased, whereas heart function 
was impaired in TAC animals. These inflamma-
tory and signaling activities were significantly 
abrogated by SS31 treatment.

Study limitations

This study has limitations. First, despite copi-
ous investigations, the true mechanisms for 
how SS31 treatment protects the heart from 
TAC injury has not yet been fully identified. 
However, a previous study has identified that 
the underlying mechanism of SS31 for sup-
pressing hypertensive cardiomyopathy was 
mainly through suppressing oxidative stress 
and protecting the integrity of mitochondria 
[17] which were identical to our findings. 
Second, LV end diastolic and LV end systolic 
blood pressures, as well as the pressure-vol-
ume loop, were not measured in the present 
study. Accordingly, this study did not determine 
LV compliance in the animals. 

In conclusion, SS31 therapy inhibited TAC-
induced HC and myocardial damage through 
multiple signaling pathways. 
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