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Abstract: Cartilage repair after degeneration or trauma continues to be a challenge both in the clinic and for sci-
entific research due to the limited regenerative capacity of this tissue. Cartilage tissue engineering, involving a 
combination of cells, scaffolds, and growth factors, is increasingly used in cartilage regeneration. Due to their ease 
of synthesis, robustness, tunable size, availability of functional groups, and activity, peptides have emerged as the 
molecules with the most potential in drug development. A number of peptides have been engineered to regenerate 
cartilage by acting as scaffolds, functional molecules, or both. In this paper, we will summarize the application of 
peptides in cartilage tissue engineering and discuss additional possibilities for peptides in this field. 
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Introduction

Cartilage repair remains a challenge both in the 
clinic and for scientific research due to the lim-
ited regenerative capacity of this tissue [1]. 
Over the last two decades, the development of 
autologous chondrocyte implantation (ACI) has 
resulted in significant progress in this field [2, 
3]. To date, ACI is the golden therapy for articu-
lar cartilage defects in the absence of osteoar-
thritis and other complications. However, prop-
agation of chondrocytes in monolayers in vitro 
often leads to chondrocyte dedifferentiation, 
notably compromising the outcome of ACI and, 
thus, being a major obstacle for the wide appli-
cation of ACI [4, 5]. 

Cartilage tissue engineering uses a combina-
tion of scaffolds, cells, and certain active mol-
ecules to produce functional human cartilage 
with which to repair tissue defects [6-8]. To 
attain this goal, biomimetic scaffold materials, 
different stem cell types, and optimized diff- 
erentiation protocols have been developed 
[9-11]. 

Peptides have been widely used in drug devel-
opment and biotechnology over the past 
decade [12]. Peptides can mimic the functions 
of proteins but with a lower production com-
plexity and cost. In addition, peptides can tar-
get curtain “flat pockets” that are undruggable 
by small molecules [13]. Peptides are easily 
synthesized, robust, and have tunable sizes, 
functional groups, and activity, making pep-
tides the molecules with the most potential for 
drug development. 

A number of peptides are involved in orthopedic 
disorders [14]. Some of these have already 
been translated into the clinic, such as parathy-
roid hormone 1-34 peptides, which are used to 
treat osteoporosis in postmenopausal women 
[15]. Other peptides have been used in scien-
tific research on cartilage tissue engineering, 
where they function as active molecules, in cell 
adsorption, as enrichment motifs, and as scaf-
folds (Figure 1). Therefore, the aim of this study 
was to identify peptides related to cartilage 
engineering and identify novel prospects for 
peptides in this field. 
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Results

Transforming growth factor-β mimetic peptides

Transforming growth factor-β (TGF-β) has cru-
cial roles in cell differentiation, collagen synthe-
sis, and matrix deposition in cartilage tissue 
engineering [16]. However, its instability and 
dilution in vivo are two significant points of con-
cern [17]. In addition, purification is expensive, 
making it even more difficult to use in the clinic. 
Therefore, peptides able to mimic TGF-β activity 
have a promising role in cartilage tissue engi-
neering due to their low costs, stability, long 
shelf-life, and ease of administration and con-
trolled release. 

TGF-β mimetic peptides, i.e., cytomodulins 
(CMs), are oligopeptides developed to function 
similarly to TGF-β [18]. These peptides contain 
4-6 amino acids with a β-bend secondary struc-
ture under physiologic conditions. Furthermore, 
the first three and last residues are limited to 
certain amino acids. Like TGF-β, CMs can 
enhance collagen I expression in fibroblasts 
and aid in wound healing in vitro [19, 20]. In 
addition, when conjugated to a poly (lactide-co-
glycolide) scaffold, CM-1 can increase wound 
healing in a full-thickness wound mouse model 
[21]. However, unlike TGF-β, CMs in a soluble 
form are unable to effectively induce chondro-
genic differentiation of stem cells [22]. These 
peptides can induce chondrogenic differentia-
tion of bone marrow-derived stem cells (BMSCs) 

only when ligated to the surface of micro-
spheres [23]. These differences may be due to 
immobilization of the peptides slowing their 
degradation and constraining their secondary 
structure to an active one.

To test this hypothesis, we synthesized several 
peptides and assessed their activity using 
human umbilical cord mesenchymal stem cells 
(hUC-MSCs) that had been isolated from human 
umbilical cords and identified by flow cytometry 
(Figure 2A, 2B). Two peptides derived from 
CM-10 and designated CM-10-D1 and CM- 
10-D2 were synthesized. To generate CM-10-D1 
(Leu-Ile-Ala-Asn-Aib-Lys), the alanine in CM-10 
was substituted with the unnatural amino acid 
aminoisobutyric acid to increase peptide stabil-
ity. However, CM-10-D1 was unable to increase 
collagen II expression in hUC-MSCs when used 
in combination with basic chondrogenic differ-
entiation media (Figure 2C). Therefore, the sec-
ondary structure of these TGF-β mimetic pep-
tides was considered next. As illustrated in the 
patent, these peptides have a β-bend second-
ary structure [18]. D-pro-L-pro is a well-known 
dipeptide fragment that can initiate anti-paral-
lel strands [24]. This fragment was therefore 
used to constrain the secondary structure of 
the peptides and CM-10-D2 (Leo-Ile-Ala-Asn-
Ala-Lys-L-pro-D-pro-Lys-Ala-Asn-Ala-Ile-Leo) 
was synthesized. CM-10-D2 was assumed to 
have both a β-bend structure and a two-fold 
higher concentration. However, when these 
peptides were used to induce chondrogenesis 
of mesenchymal stem cells (MSCs), the results 
remained negative (Figure 2C). 

As a result of these experiments, it was con-
cluded to be difficult to design an active TGF-β 
mimetic peptide as how the peptide was de- 
signed was absent from the patent. Further- 
more, the peptides were too short to allow for 
certain motifs to be introduced to constrain the 
structure. CM-10 has a positive effect when 
ligated to scaffolds, so perhaps this is the opti-
mal manner in which to use these peptides as 
free peptides may actually be unstable and 
easy diluted in vivo.

Cell-penetrating peptides

Cell-penetrating peptides are peptides that can 
penetrate the cell membrane and deliver their 
‘cargo’, including proteins, small interfering 

Figure 1. The use of peptides in cartilage tissue 
engineering, which utilizes a combination of growth 
factors, cells, and scaffolds. In terms of growth fac-
tors, TGF-β mimetic, cell penetrating, and growth fac-
tor affinity peptides work by mimicking, delivering, 
and recruiting growth factors, respectively. For cells, 
mesenchymal stem cell (MSC) affinity peptides work 
through MSC recruitment and in situ purification. 
For scaffolds, peptides work by self-assembling into 
hydrogel, thus mimicking the native environment of 
cartilage using affinity peptides and increasing deg-
radation using degradable peptides.
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RNAs, nanoparticles, oligonucleotides, and ot- 
her peptides, into the cytoplasm [25]. Because 
TGF-β and other proteins regulate chondrogen-
ic differentiation of stem cells, studies based 
on transfection of these genes into stem cells 
using adenoviral and lentiviral vectors have 
been conducted [26]. However, translation of 
these techniques incurs the risk of tumori- 
genesis and pathogenic contamination. Cell-
penetrating peptides can transport certain 
genes into cells without incurring any of the 
risks mentioned above. You et al. used the NLS-
TAT peptide to deliver the hTGF-β3 plasmid into 
precartilaginous stem cells, which promotes 
chondrogenesis of these cells [27]. Further- 
more, they used this peptide as a carrier for the 
hTGF-β3 plasmid on a self-assembled peptide 
scaffold [28]. Some microRNAs, such as miR-
140, play crucial roles in cartilage homeostasis 
and can also be delivered into cells by cell-pen-
etrating peptides [29, 30].

Affinity peptides

Peptides with the ability to bind to specific cells, 
scaffolds, and cytokines are major contributors 
to the construction of engineered cartilage. 
Below, we will review the related studies in 
three parts. 

Cells are recruited and adhere to the scaffolds 
when using cell-adhesive scaffolds. This meth-
od was first performed using a chondrocyte-
specific antibody. Lin et al. later used anti-CD44 
antibody and the biotin-avidin binding system 
to improve cell adhesion and cartilage repair 

[31]. However, the high cost and difficulty of 
antibody loading in this system make it imprac-
ticable. Cell affinity peptides are a better alter-
native due to being easier to synthesize and 
ligate onto the scaffold. Several CD-44 affinity 
peptides have been reported that could be 
used to replace this antibody-biotin-avidin sys-
tem [32-34]. Baron et al. developed a chondro-
cyte affinity peptide using phage display [35]. 
When conjugating this peptide onto scaffolds, 
there was increased cell adhesion that poten-
tially increased the repair of defects. Chon- 
drocyte affinity peptides can also increase the 
integration of scaffolds and tissues due to their 
ability to bind cells at the sites of defects. In 
addition to chondrocyte affinity peptides, MSC 
affinity peptides can be used to construct cell-
free scaffolds used to repair cartilage defects, 
where they recruit autologous MSCs. Ao et al. 
developed several MSC affinity peptides and 
used them to repair cartilage defects [36-39]. 
E7 is a peptide screened by phage display with 
a high affinity towards bone marrow-derived 
MSCs. E7 was covalently conjugated onto poly-
caprolactone electrospun meshes to construct 
an “MSC-homing device” [36]. This scaffold 
was implanted into a cartilage defect in a rat 
knee joint using a microfracture procedure. 
After 7 days, immunofluorescence staining re- 
vealed significantly more cells growing on this 
scaffold expressed MSC-specific surface mark-
ers than a RGD-conjugated scaffold. Further- 
more, the percentage of CD68 positive cells in 
E7-conjugated scaffolds was much lower than 
that in the RGD peptide-conjugated scaffolds, 
suggesting the E7-conjugated scaffolds absorb 

Figure 2. Chondrogenic potential of TGF-β mimetic peptide. A, B. Analysis of human umbilical cord-MSCs by flow cy-
tometry, where cells are CD34 and CD45 negative (97.5%) and CD73 and CD90 positive (99.3%). C. Col2a1 expres-
sion in human umbilical cord-MSCs induced with CM-10, CM-10-D1 and CM-10-D2 (10 µM) for 21 days as analyzed 
by quantitative real-time PCR (GAPHD house-keeping gene used as internal control).
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fewer inflammatory cells. By selectively recruit-
ing MSCs, MSC-affinity peptides on the scaf-
folds act as enrichment and purification tools in 
vivo [40]. 

In addition to MSCs, bone marrow also con-
tains growth factors. TGF-β affinity peptide can 
recruit TGF-β to the impaired region following 
microfracture surgery [41, 42]. Stupp et al. 
developed a TGF-β1 affinity peptide and ligated 
it to peptide amphiphile nanofibers [42]. In vitro 
experiments indicate that this scaffold pro-
motes the survival and chondrogenic differen-
tiation of human MSCs. Furthermore, they con-
firmed the efficacy of this scaffold in repair of 
cartilage using a rabbit model. In addition to 
recruiting TGF-β in vivo, this peptide also over-
comes the dilution problem of TGF-β, where a 
controlled release system can be built by 
reserving TGF-β in the scaffold using affinity 
peptides.

To recreate the biochemical and biomechanical 
functions of cartilage, different types of scaf-
folds have been developed. However, accurate 
recreation is still a significant challenge beca- 
use the native environment of cartilage is com-
plex and dynamic. Extracellular matrix (ECM) 
molecule affinity peptides can help mimic the 
native environment of chondrocytes and, thus, 
are frequently used as scaffold elements [43, 
44]. Incorporating ECM molecules into a scaf-
fold via affinity peptides avoids chemical modi-
fications when constructing scaffolds, which 
may influence the degradation and biological 
functions of these molecules [45]. Bryant et  
al. demonstrated the promise of this strategy 
by successfully retaining chondrocyte-secreted 
proteoglycans in hyaluronic acid (HA)-binding 
peptide-modified poly (ethylene glycol) hydro-

gels using exogenous HA for 28 days [46]. In 
cartilage, ECM molecule concentrations in- 
crease gradually from the articulating surface 
towards the bone. Controlling the arrangement 
of these biomolecules is therefore of great 
interest when striving to mimic native tissues 
[47, 48]. Stevens et al. designed peptide-poly-
caprolactone conjugates with HA or chondroitin 
sulfate-binding sites in a specific spatial organi-
zation, which realized the biomimetic spatial 
distribution of HA and chondroitin sulfate [49]. 
This strategy successfully prepared a scaffold 
with the exceptional properties and functions 
of natural cartilage tissues. Besides the bio-
chemical structure of cartilage, the biomechan-
ical environment also needs to be considered. 
For affinity peptides, interactions with surro- 
unding native ECM possibly mimic native ECM-
like interactions, which may benefit cartilage 
regeneration. Stevens et al. reported that HA- 
binding and chondroitin sulfate-binding pep-
tide-modified hydrogel significantly promote 
chondrogenesis of BMSCs [50]. Because the 
natural environment is complex, it is challeng-
ing to fully recaptiulate. However, using scaffold 
affinity peptides, we can synthesize versatile 
and well-designed biomimetic scaffolds. 

Self-assembly peptides

Self-assembly peptides are composed of either 
alternating hydrophilic and hydrophobic amino 
acids or peptide amphiphiles [51-53]. These 
peptides can self-assemble into nanofibers  
and form nanofibrous hydrogels. Compared to 
hydrogels derived from biomacromolecules, 
peptide hydrogels are easier to synthesize and 
pose no risk of animal-derived pathogens. 

PuraMatrixTM (3DM Inc., Cambridge, MA) is a 
commercially available hydrogel formed by 
RADA16-1 peptide that can support cartilage 
formation from chondrocytes and MSCs [54, 
55]. Hydrogels formed from peptides with re- 
peating KLD and RAD units can support carti-
lage formation comparably to agarose gels 
[56]. 

Peptide gels are amenable to incorporation of 
bioactive elements, especially bioactive pep-
tides [57]. As shown in Figure 3, peptide gels 
can theoretically be created with specific prop-
erties or for specific cellular interactions by  
synthesizing scaffold peptide-functional pep-
tide conjugates. For example, peptide gels with 

Figure 3. Schematic of the incorporation of bioactive 
peptides into self-assembly through peptide amphi-
philes. The peptides form nanofibers through self-as-
sembly with the hydrophobic terminal (red) as the in-
terior and hydrophilic terminal (blue) as the exterior. 
Bioactive peptides (green) bind outside of nanofibers 
by ligating to the hydrophilic terminal. 



Peptides for cartilage repair

505	 Am J Transl Res 2018;10(2):501-510

binding sites for TGF-β1 have been prepared by 
synthesizing peptide amphiphile-TGF-β1 affinity 
peptide conjugates [42], resulting in controlled 
release systems that facilitate chondrogenic 
differentiation of encapsulated MSCs in vitro 
within 4 weeks.

Degradable peptides

Scaffolds provide three-dimensional structures 
for cells, enhance reservation of cells, and con-
currently increase matrix synthesis. However, 
rates of degradation for many scaffolds are 
lower than the rates of matrix deposition by 
encapsulated cells [58]. Therefore, accelerat-
ing degradation of the scaffolds can make 
room for newly synthesized matrix. 

Matrix metalloproteinases (MMPs) cleave col-
lagen, gelatin, and other proteins in ECM [59]. 
Scaffolds linked through MMP-degradable pep-
tides degrade faster in the presence of MMPs 
[50, 60]. Anseth et al. crosslinked poly (ethyl-
ene glycol) norbornene hydrogels with MMP-
degradable peptides [60] and found this scaf-
fold had significantly higher glycosaminoglycan 
and collagen deposition than control gels after 
14 days of culture. 

Other functional peptides 

Other functional peptides, such as RGD pep-
tides, are also used in cartilage tissue engi-
neering to aid in cell adhesion [61-63]. As 
reported, a low RGD density is effective for 
chondrogenic differentiation, while a high RGD 
density often results in hypertrophy due to acti-

vation of integrins [64-66]. RGD can also in- 
crease adhesion of inflammatory cells and off-
set repair [36]. Therefore, RGD peptides are 
more useful in bone healing [67]. 

N-cadherin is a key factor mediating cell-cell 
interactions during mesenchymal condensa-
tion and chondrogenesis [68]. The introduction 
of N-cadherin mimetic peptides into scaffolds 
can promote both early chondrogenesis of 
MSCs and late cartilage-specific matrix produc-
tion [69].  

The use of laminin-derived peptides on chito-
san/gelatin surfaces promotes attachment and 
neuronal differentiation of stem cells [70]. Kuo 
et al. found that laminin-related peptide on 
scaffolds increased adhesion of bovine knee 
chondrocytes and enhanced expression of gly-
cosaminoglycans and collagen [71]. 

Discussion

Cartilage tissue engineering is a growing bio-
medical field. Meanwhile, peptides have been 
applied in a wide range of applications in medi-
cine and biotechnology over the past decade. 
Therefore, combining cartilage tissue engineer-
ing and the use of peptides may create a num-
ber of opportunities. Table 1 lists the peptides 
discussed in this review. 

TGF-β is a key factor in chondrogenic differen-
tiation, but several drawbacks, including high 
cost, delivery issues, a short shelf life, in vivo 
dilution, and potential immunogenicity, hinder 
its widespread use, including in the clinic. 

Table 1. List of the peptides involved in cartilage tissue engineering
Name Sequence Function
Cytomodulins [18-23] AA1-AA2-AA3…AAn (AA1 = A, N, L; AA2 = V, 

I; AA3 = A; AAn = Q, D, E, N)
TGF-β mimetic peptides

NLS-TAT [27, 28] PKKKRKVKGRKKRRQRRRPPQ Delivery of nucleic acid

E7 [36-38, 40] EPLQLKM Bone marrow mesenchymal stem cell affinity peptide

L7 [39] LTHPRWP Synovium-derived mesenchymal stem cell affinity peptide

TGFBP [42] HSNGLPL TGF-β affinity peptide

HA binding peptide [46, 47, 50] RYPISRPRKRC Binds specifically to Hyaluronan

Chondroitin sulphate binding peptide [49, 50] YKTNFRRYYRF Binds specifically to chondroitin sulphate

RADA16-1 [54, 55] RADARADARADARADA Forms hydrogel for scaffold

KLD-12 [56] KLDLKLDLKLDL Forms hydrogel for scaffold

RGD peptide [61-63] Cyclic RGD Aids cellular adhesion to scaffolds

MMP7-cleavable peptide [50] CGGGPLELRAGGGC Cleaved specifically by matrix metalloproteinase-7

MMP-degradable peptide [60] KCGPQGIWGQCK Cleaved by matrix metalloproteinase

N-cadherin mimic peptide [69] HAVDIGGGC Mimics the function of N-cadherin 

Laminin-derived peptides [71] CDPGYIGSR Aids in the growth of bovine knee chondrocytes
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Peptide mimetics can exert effects similar to 
factors such as TGF-β and overcome the prob-
lems mentioned above. However, free mimetic 
peptides fail to facilitate chondrogenesis, in- 
cluding in two unsuccessful avenues of opti- 
mization that were attempted in this study. 
Fortunately, peptides can promote cartilage 
formation when ligated onto scaffolds. Con- 
currently, TGF-β affinity peptide can recruit TGF-
β to the defect from the bone marrow to assist 
cartilage regeneration. With these peptides in 
hand, we have some exogenous TGF-β alterna-
tives available. 

The variability of MSC preparations makes clini-
cal translation difficult. Further in situ purifica-
tion is realizable through the use of affinity pep-
tides. In addition, exosomes secreted by MSCs 
have similar functions, but are less complex 
than MSCs, providing an alternative therapy for 
various inflammation-related diseases, includ-
ing osteoarthritis [72-74]. As reported by Zhu et 
al., exosomes derived from MSCs increase the 
proliferation and migration of chondrocytes in 
vitro, and exert notable therapeutic effects in a 
collagenase-induced osteoarthritis mouse mo- 
del [75], while exosome-laden hydrogels can 
drive cartilage regeneration in a rabbit model of 
cartilage defect [76]. Peptides can be used in 
target delivery of exosomes and peptides that 
bind specifically to exosomes have been report-
ed as well [77-80]. In the future, combining exo-
somes and peptides will likely open up new 
areas for cartilage tissue engineering. 

Conclusion

Peptides have multiple functions in cartilage 
tissue engineering. Maturation of our knowl-
edge in this field will give rise to novel applica-
tions for peptides in cartilage repair. 

Materials and method

Cell culture

The collection of human umbilical cord was 
approved by Shenzhen Second People’s Hos- 
pital. After the isolation of Wharton’s jelly, we 
cut the jelly into 1-2 mm3 cube and attached 
them on the plate, subsequently incubated wi- 
th the medium (MesenGro medium, StemRD, 
MGro-500B; 10% FBS, Compass Biomedical, 
PLS6; 10 µg/L basic fibroblast growth factor, 
PeproTech, 100-31; 100 U/ml Penicillin-Stre- 

ptomycin, Gibco, 15140-122) at 37°C with 5% 
CO2. After 7-10 days’ incubation, we digested 
the cells with 0.25% trypsin (Gibco, 25200-
072) and cultured the cells for further use.

Flow cytometry analysis

hUC-MSCs were lifted by 0.25% trypsin and 
washed with PBS for three times. After wash, 
cells were suspended in PBS with a concentra-
tion of 5 × 105/100 µL. 2 µL of the antibody 
solution (PE Mouse Anti-Human CD45, BD 
Sciences, 555483; FITC Mouse Anti-Human 
CD34, BD Science, 555821; PE Mouse Anti-
Human CD73, BD Science, 55257; FITC Mouse 
Anti-Human CD90, BD Science, 555595) were 
added to the cell suspension. After mixing with 
taping, the cells were incubated with the anti-
body for 1 hr at room temperature protected 
from light. Before loading to the machine (BD 
Sciences), the cells were washed with PBS 
once and suspended with 500 µL PBS. 

Chondrogenic differentiation

hUC-MSCs P3 cells were seeded in 6-well pla- 
tes with cell density of 50,000 cells/well. Cells 
differentiation were induced with 10 µM pep-
tides, 0.1 mM dexamethasone (Sigma, D4902-
100MG), and 50 mg/mL ascorbate (Sigma, 
A7631-25G) in DMEM High Glucose (Gibco, 
11965-092) medium.  

The media were changed every 3 days. After 21 
days, RNA was purified with TRIzol (Invitrogen, 
15596026). The expression level of Ca2a1 was 
detected by real-time PCR (GPADH-Forward: 
5’-GATCATCAGCAATGCCTCCT-3’; GPADH-Rever- 
se: 5’-TGTGGTCATGAGTCCTTCCA-3’; Col2a1-For- 
ward: 5’-CAACCAGGACCAAAGGG-ACA-3’; Col2- 
a1-Reverse: 5’-ACCTTTGTCACCAC-GATCCC3’).

Statistical analysis

Values were expressed as means ± SD. All sta-
tistical analyses were performed using Graph-
Pad Prism software (GraphPad, San Diego, CA, 
USA).
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