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Abstract: The development of inflammation is mutually affected with damaged DNA and the abnormal expression 
of protein modification. Ubiquitination, a way of protein modification, plays a key role in regulating various biological 
functions including inflammation responses. The ubiquitin enzymes and deubiquitinating enzymes (DUBs) jointly 
control the ubiquitination. The fact that various ubiquitin linkage chains control the fate of the substrate suggests 
that the regulatory mechanisms of ubiquitin enzymes are central for ubiquitination. In inflammation diseases, the 
pro-inflammatory transcription factor NF-κB regulates transcription of pro-labour mediators in response to inflam-
matory stimuli and expression of numerous genes that control inflammation which is associated with ubiquitination. 
The ubiquitination regulates NF-κB signaling pathway with many receptor families, including NOD-like receptors 
(NLR), Toll-like receptors (TLR) and RIG-I-like receptors (RLR), mainly by K63-linked polyubiquitin chains. In this 
review, we highlight the study of ubiquitination in the inflammatory signaling pathway including NF-κB signaling 
regulated by ubiquitin enzymes and DUBs. Furthermore, it is emphasized that the interaction of ubiquitin-mediated 
inflammatory signaling system accurately regulates the inflammatory responses.
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Introduction

Inflammation is the defensive process of living 
tissue when vascular system responds to the 
injury factor. Inflammatory response is a com-
plex process involving interaction between 
many factors and cellular points. The immune 
system, representing the first defense line ag- 
ainst pathogen invasion or danger signals, is 
mediated by pathogen-recognition receptors 
[1]. When the body suffers damage or pathog- 
en invasion, the immune system will be acti- 
vated and gather a lot of inflammatory cells, 
secrete varieties of cytokines and inflamma- 
tory mediators leading to inflammation. The in- 
flammatory response is one of the important 
performances of lots of diseases including car-
diovascular disease and metabolic diseases 
[2]. The inflammatory response also induces 
the occurrence of tumor and promotes tumor 
development and metastasis. The developm- 

ent of inflammation is mutually affected with 
damaged DNA and the abnormal expression  
of protein modification [3]. Ubiquitination is the 
process that ubiquitin molecules modify the 
target protein by an enzymatic reaction cas-
cade. Ubiquitination regulates protein stability, 
activity and regulation of protein function, th- 
ereby controls cellular function [4]. 

NF-κB, as a transcription regulator in cells, in- 
duces varieties of genes expression via stimu-
lating agents, such as viruses, tumors, B cell 
activating factor and lymphatic toxin, and the- 
reby produces a variety of cytokines partici- 
pated in inflammatory response. Studies have 
indicated that involvement of TLR, NLR and 
RIG-I-mediated inflammatory pathways leads  
to activation of transcription factors including 
NF-κB and results in the release of pro-infla- 
mmatory cytokines and chemokines which is 
associated with ubiquitination [5, 6]. Some 
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studies have shown that TLR, NLR and RLR re- 
ly on the linear and K63-polyubiquitination to 
mediate the NF-κB activation [7-9]. In addition, 
ubiquitin enzymes and DUBs also play a sig- 
nificant role in regulation of NF-κB activation 
which promotes the expression of inflamma- 
tory cytokines [10, 11]. In this paper, recent  
discoveries regarding molecular regulation of 
the inflammation by ubiquitination are sum- 
marized and possible mechanism which is as- 
sociated with ubiquitination targeting the in- 
flammation to impact inflammatory signaling  
is discussed.

The inflammation system

Inflammation is a defensive response to sti- 
muli. In inflammatory process, tissue and ce- 
lls are damaged by injury factors, and on the 
other hand the inflammatory congestion and 
exudative reactions kill the injury factors. The 
inflammatory response is one of the important 
performances of lots of diseases including car-
diovascular disease, metabolic diseases, the 
initiation and development of tumor [2]. In addi-
tion, damaged tissue is repaired and healed  
by substrate and interstitial regenerated cells. 
NF-κB signal transduction pathway is closely 
related to inflammatory lesions. In recent ye- 
ars, the signal pathway, as the target of anti-
inflammatory therapy, is a hot spot and many 
studies have shown that the development of 
inflammation through NF-κB pathway is associ-
ated with ubiquitination [12, 13].

The ubiquitin system

Ubiquitin (UB) is a highly conserved small pro-
tein with a molecular mass of 8.5 kDa, contain-
ing 76 amino-acid residues, which are widely 
present in eukaryotic cells [14]. The ubiquitin 
molecule consists of seven lysine sites (K6, 
K11, K27, K29, K33, K48 and K63) at the 
C-terminal glycine (Gly) point and at the N- 
terminal methionine (Met1) site. The C-termi- 
nal glycine of ubiquitin molecule can be com-
bined with the e-amino group of any one lysi- 
ne molecule to form multi-monoubiquitination 
[15]. Therefore, the substrate protein plays an 
important control function conducted by the 
variety of ubiquitin chain connection. Ubiqui- 
tination is a process, which uses three diffe- 
rent types of enzymes, an E1 ubiquitin-activ- 

ating enzyme, an E2 ubiquitin-conjugating en- 
zyme and an E3 ubiquitin ligase to attach the 
substrate proteins [16] (Figure 1). Ubiquitina- 
tion, the ubiquitin depending on enzymes to 
modify the target protein, plays an important 
role in the regulation of various biological func-
tions such as injury repair and inflammatory 
immunity. 

Central role of ubiquitin enzymes in ubiquitina-
tion

Attachment of UB to proteins is catalyzed by 
Ubiquitin-activating enzyme E1, Ubiquitin-con- 
jugating enzyme E2 and Ubiquitin ligase E3 
[17]. The specific process of ubiquitination: E1 
enzyme activates ubiquitin through adhesion to 
the tail of ubiquitin molecule. Then the activat-
ed ubiquitin molecule will be transferred to the 
E2 enzyme. At last, the E2 enzyme and some 
different types of E3 enzyme can decorate the 
target protein of ubiquitination by co-recogniz-
ing it. The downstream of all ubiquitination 
reactions are regulated by E1 ubiquitin-activat-
ing enzyme in human body. Various E2 and  
E3 enzymes are combined, by binding speci- 
fic protein substrates, to catalyze different 
types of ubiquitin chains. The E2 enzyme plays 
a central role in regulating ubiquitin chain as- 
sembly, which controls the length of ubiquitin 
chain and the type of connection. E3 ligases, 
capable of decorating the target protein, con- 
fer the substrate upon some ubiquitin modi- 
fications through regulating ubiquitin transfer 
from E2 enzyme to the target protein [18-20]. 
According to the protein domain type of the 
substrate identified by E3, E3 enzymes can be 
categorized into two groups, RING type and 
HECT type [21]. RING and U-box domains, high-
ly similar in structure and function, serve as  
a scaffolding role to link a catalytically active 
E2 enzyme to a protein substrate. E3 ligases 
containing HECT domains catalytically activate 
themselves and transfer ubiquitin from E2 to 
their cysteine for directly connecting substrate 
protein. E2 and E3 play a crucial role in the ty- 
pe of ubiquitin chain linkage, especially for 
HECT domain E3 [22-24]. Depending on the 
relative ratio of E3 enzymes to target protein, 
the monoubiquitination and multi-monoubiqui-
tination of target proteins can be identified  
[25-27]. Therefore, in series of enzyme cas-
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Figure 1. Ubiquitin cascade produces diverse ubiquitin chains that can affect different varieties of cellular pro-
cesses. Ubiquitin-activating enzyme (E1) transfers ubiquitin to ubiquitin-conjugated enzyme (E2) with an ATP par-
ticipation. Ubiquitin ligase (E3) then transfers the ubiquitin molecule to the substrate. Repeating this sequence of 
ubiquitin transfer results in a variety of length of the ubiquitin chain, K48 and K63-linked polyubiquitin chain bring 
into their biological function. K63- and K48-mediated polyubiquitination play an important role in a large number of 
biological and pathological functions by NF-κB signaling pathway.

cade reactions, E3 plays a crucial role in tar- 
get protein of specific recognition and the re- 
gulation of ubiquitination system. 

DUBs are proteases that reverse the reaction 
of ubiquitination, which is the main way in the 
degradation of protein under the substrate [28, 
29]. The active site thiol is charged by DUBs 
that can separate ubiquitin from target prote- 
in and hydrolyze the connection between cellu-
lar thiol and amines for conjugating the pro- 
tein, thereby releasing ubiquitin molecules [27]. 
DUBs play a key role in regulating ubiquitin-
mediated signaling pathway. In inflammation, 
NF-κB, a ubiquitous transcription factor, plays a 
key role in regulating genes. It has be- 
en suggested that activation of NF-κB and re- 
gulation of inflammation are related to ubiqui- 
tination [30, 31]. Next, the release of NF-κB  
factor regulated by various type of ubiquitina-
tion is described.

Types of ubiquitin linear modification in signal-
ing pathway

Different assembly modes of ubiquitin chain 
have various biological functions [32]. K48-

linked polyubiquitin chain (Lys48) and K63-
linked polyubiquitin chain (Lys63) play an 
important role in regulating activity process of 
NF-κB pathway [33]. The following discussion  
is focused on the function of Lys48 and  
Lys63.

K48-linked polyubiquitination 

To regulate the stability of protein through ne- 
gative feedback adjustment is the major func-
tion of K48-ubiquitin chains. Lack of K48-link- 
ed polyubiquitin chains account for the death  
of cells [34]. In the process of cell signal tr- 
ansduction, K48 ubiquitination can promote  
or block the transmission of signals by regulat-
ing the degradation of signal proteins [33]. For 
example, K48 ubiquitination controls the deg-
radation of signal inhibitor IκB which promotes 
transduction of the classical signal pathway of 
NF-κB [35, 36] (Figure 1). IκBs, the inhibitor 
proteins of NF-κB, bind NF-κB dimers and ma- 
sk its nuclear localization signal, thereby en- 
abling NF-κB remaining in the cytoplasm [37]. 
Exposure of cells to various extracellular sti- 
muli leads to the rapid phosphorylation. After 
phosphorylation, the IKK phosphate acceptor 
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sites on IκB serve as an important part of a 
specific recognition site for E3RS (IκB/β-TrCP), 
a SCF-type E3 ubiquitin ligase, thereby expla- 
ining how to form the ubiquitin chains and  
promote the ubiquitination and degradation of 
IκB through catalysis [38]. Then, exposure of 
nuclear localization signal translocates NF-κB 
to the nucleus where it regulates the gene tran-
scription [39].

K63-linked polyubiquitination

K63-linked polyubiquitination modulates non-
proteolytic functions, including protein traffick-
ing, kinase activation and phosphatase activa-
tion, DNA repair, NF-κB activation and chroma- 
tin dynamics [40]. The signaling molecules of 
K63-linked polyubiquitin play an important ro- 
le in signal transduction including NF-κB, T-cell 
receptor, Toll-like receptor, RIG- I-like receptor, 
NOD-like receptor, DNA damage response pa- 
thways and Akt activation [41]. For instance, 
TRAF6 (TNF receptor-associated factor 6), an 
RING domain protein, serving as an Ub E3, 
plays a significant role in the activation of IKK 
by interleukin-1 (IL-1) and TLR pathways [42]. 
The E2 dimeric complex, composed of Ubc13 
and a Ubc-like protein called Uev1A, is res- 
ponsible for the activation of IKK. TRAF6, bin- 
ding with the E2 dimeric complex (Ubc13/
Uev1A), catalyzes the target proteins of K63-
linked poly-ubiquitination including TRAF6 and 
NEMO themselves. Then, the protein kinase 
complex consisting of TAK1, TAB1 and TAB2  
will be activated [43]. The K63 polyubiquitin 
chains bind to the domains of TAB2 and TAB3, 
which leads to the activation of TAK1. The ac- 
tivated TAK1 phosphorylates IKKb and then 
enables the downstream activation of NF-κB 
signal pathway [44]. 

Inflammation and its signaling pathways regu-
lated by ubiquitination 

Inflammation is a non-specific immune res- 
ponse to harmful stimuli where the ubiquitin 
system plays an important role. The first line  
of defense to resist invading pathogens is me- 
diated by pathogen-recognition receptors. It is 
generally believed that inflammation is caus- 
ed by series of interaction between genetic  
factors, the environment, the abnormal intesti-
nal microbial immune response and other fac-

tors [45]. Some recent studies have strongly 
proved that the abnormal modification of pro-
tein, such as ubiquitination, plays a crucial ro- 
le in the pathogenesis of inflammation [46]. 
Recently, ubiquitination has emerged as an 
essential role in signal transduction of inflam-
mation, including TLRs, NLRs and RLRs. All  
of these can inhibit activation of NF-κB and 
MAPKs signaling pathway [47]. To illuminate  
the relationship between inflammation and  
ubiquitination, including three ubiquitin li- 
gases (A20, CYLD and the E3 ligase Ubc13/
uev1A) [48-51], the regulation of these recep-
tors for inflammation is discussed below.

Toll-like receptors

TLRs, major components of innate immunity, 
activate specific signaling pathways and infla- 
mmatory responses through recognizing con-
served pathogen components [52]. TLR4 is the 
only TLR that uses all four adaptors. In contrast 
to other TLRs, TLR4 signaling can induce inf- 
lammatory cytokines through activating My- 
D88 and TRIF-dependent pathways. Upon the 
binding of bacterial lipopolysaccharide, TLR4 
gathered upon TIRAP on the plasma mem-
brane, where TLR4 subsequently promotes the 
gathering of MyD88, resulting in activation of 
NF-κB, MAPK and production of pro-inflamma-
tion cytokines [53, 54]. MyD88 is essential  
for the downstream signal of various TLRs. 
Children with deficiency of this signal molecu- 
les result in the recurrence of [55]. IL-1R-
associated kinase (IRAK)-4, a serine kinase 
with a N-terminal death domain, interacts wi- 
th MyD88 to activate other IRAK family mem-
bers such as IRAK-1 and IRAK-2 [56]. TNFR-
associated factor 6 (TRAF-6) acts as an E3 
ubiquitin protein ligase. Combination of TRAF-6 
and IRAK-1 on the Lys63 chain with E2 ubi- 
quitin-conjugating enzymes Ubc13 and Uev- 
1A influences activation of IRAK, which inter-
acts with TRAF-6 and catalyzes formation of 
the polyubiquitin [57, 58] (Figure 1) (Table 1). 
The complex of TGF-β-activated kinase 1 (TA- 
K1) is activated by K63-linked poly-ubiquitin 
chains and linked with the novel zinc finger ty- 
pe ubiquitin-binding domain of TAB2 and TA- 
B3, thus, regulating the kinase TAK1 complex 
[59]. The IKK complex, composed of IKK-a,  
IKK-b, and NF-κB essential modulator (NEMO) 
also bind the K63-linked poly-ubiquitin chains 
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Table 1. Modification of NF-κB signaling via ubiquitin enzymes and DUBs
Pathway Substrate Classification Ubiquitin modification Consequence Reference
TNF-α A20 DUBs Remove K63-ub from RIP1 and TRAF6 Inhibit TNF-α induced NF-κB signaling [68, 69]

OTULIN DUBs Inhibit the production of M1-ub Inhibit TNF-α induced NF-κB signaling [72]

TLR Ubc13/uev1A RING E3 ligase Transfer of K63 on TRAF6 Inhibit NF-κB signaling [45]

XIAP RING E3 ligase Transfer of K63 on RIP2 Inhibit NF-κB signaling [54]

NOD1/2 RIP2 - Remove K63-ub from RIP2 Inhibit NF-κB signaling
And promote IKK activation

[55]

CYLD DUBs Remove K63-ub from RIP2 Inhibit NF-κB signaling [64, 65]

RIG-I TRAF3/TAK1 - Prevent interaction between TRAF3 and TBK1 Inhibit NF-κB signaling [60]

DUBA DUBs Remove K63-ub from TRAF3 Inhibit NF-κB signaling [71]
Abbreviations: Ubc13, ubiquitin conjugating enzyme E2N, XIAP, X-linked inhibitor apoptosis protein.

[60, 61]. Thus, Phosphorylated IκB proteins 
suffer from the degradation by the ubiquitin 
system, suggesting that the freed NF-κB is 
translocated into the nucleus and activates  
the expression of pro-inflammation cytokine 
genes [62]. In contrast to other TLRs, TLR4 si- 
gnaling can induce the expression of inflam- 
matory cytokines through activating MyD88 
and TRIF-dependent pathways [63] (Figure 2).

NOD-like receptors

NLRs family consists of evolutionarily con-
served cytosolic proteins that respond to pa- 
thogen- or damage-associated molecular pa- 
tterns (PAMPs or DAMPs) [64]. NLRs typically 
include several leucine-rich repeats (LRRs) at 
the C termini which can recognize PAMP or 
DAMP and, then, activate the inflammasome 
[65, 66]. Mutations of NLRs are frequently 
linked to inflammation diseases. For example, 
the emerged evidences suggested that NAL- 
P3/cryopyrin was associated with various kin- 
ds of inflammatory syndromes, while the mu- 
tations of NOD2 were related to the Crohn’s  
disease [67]. Cumulative evidences have de- 
monstrated that NLRP3 inflammasome prim- 
ing plays an important role in regulating ubi- 
quitin [68-70]. NOD1 and NOD2, the cascade 
downstream of NLR signal, induce the tran-
scriptional upregulation of pro-inflammatory 
cytokines and activate NF-κB via an adaptor, 
RIP2/RICK [71] (Table 1). Many studies have 
suggested that NLRs relying on the K63 poly-
ubiquitination played a central role in NOD-
mediated activation of IKK and NF-κB [72, 73] 
(Figure 2). NOD1 and NOD2 could be stimulat-
ed by bacterial ligands which produced mur-
amyl dipeptide to gather RIP2 via the gather- 

ing CARD domain containing protein kinase to 
activate NF-κB and MAPK signaling pathways 
[74]. In addition, the activation of signal requir- 
es the ubiquitin ligases. RIP2, TRAF6 and NE- 
MO, the target proteins of K63 polyubiquitina-
tion, catalyzed by Ubc13/Uev1A and TRAF pro-
teins [75, 76]. The sites of RIP2 and NEMO 
ubiquitination are important for activating IKK 
by NODs. TAK1 kinase complex was gathered 
and activated by RIP2 polyubiquitination whi- 
ch promoted the activation of IKK. This post-
translational modification leads to the linear 
polyubiquitination of RIP2 and promotes the 
expression of pro-inflammatory cytokines and 
chemokines [75] (Figure 2). Therefore, the 
assembly and disassembly of K63-linked poly-
ubiquitin chains and the expression of pro-
inflammation cytokines are essential for regu-
lating NLR signal.

RIG-I-like receptors

Formation of RIG-I is known to be modulated  
by ubiquitination. E3 ubiquitin ligases, TRIM25 
and RNF135, mediate K63-linked polyubiquiti-
nation of RIG-I which results in RIG-I oligom- 
erization [77]. This modification is associated 
with the activation of RLR signal. TRAF3 and 
TBK1 gathered by RIG-I complex stimulate the 
production of interferon TRAF6 and activate 
the NF-κB signal (Table 1) (Figure 2). Deficien- 
cy of TRIM25 had an effect on cell activation 
which induced the response of type 1 interfer-
ons to RNA virus infection, suggesting that  
protein plays a key role in the viral signaling 
pathway [78, 79]. The signal activation of RIG-I 
downstream required another RING domain 
protein, TRAF3. Many experiment results indi-
cated that lack of TRAF3 RING domain caused 
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Figure 2. Ubiquitination plays a central role in the activation of NEMO and 
IκB by multiple signaling pathways, including those emanating from Toll-like 
receptors (TLRs), NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs). 
In TLRs-mediated signaling, TLR4 promotes the gathering of MyD88, lead-
ing to activation of NF-κB and the production of pro-inflammation cytokines. 
In NOD2-mediated signaling, NALP3 protein promotes K63-linked polyubiq-
uitination of RIP2, thus allowing the degradation of the IκB and NEMO to 
enable translocation of NF-κB proteins p50 and RelA to the nucleus, whose 
kinase activation stimulated the expression of inflammatory cytokines. RIG-
I signaling pathways are regulated by TRAF6, which promote K63-linked 
polyubiquitination on TRAF6 and RIG-I to stimulate NEMO gathering.

abnormal induction of type 1 interferons, sug-
gesting that its E3 activity was important for 
activating TBK1 [80]. Multiple TRAF proteins, 
including TRAF2, TRAF3, and TRAF6, bind to 
MAVS (mitochondrial antiviral signaling) to acti-
vate IKK and TAK1. However, K63-linked chains 
were removed by DUB cylindromatosis (CYLD), 
which counteracted the K63-linked poly-ubiqui-
tination in RLR signaling (Table 1). Therefore, 
the bind between RIG-I and MAVS was abro- 
gated [81]. In addition, the TRIM25-related ubi- 
quitination of RIG-I caused the negative regu- 
lation of RIG-I signal by linear ubiquitination 

[82]. Therefore, activation of 
RLR pro-inflammatory signal 
relies on K63-linked poly-ubiq-
uitination for emerging antivi- 
ral responses and producing 
inflammatory cytokines.

DUBs associated with inflam-
mation and pathways

Deubiquitination also plays an 
important role in regulating 
homeostatic NF-κB activation, 
which could lead to excessive 
inflammation and cancer. Ho- 
wever, the aberrant activation 
of NF-κB linking to various 
inflammation is associated wi- 
th the defects in DUBs. Re- 
cently, several researches in- 
dicated that DUBs negatively 
regulated activation of NF-κB 
[83, 84]. The NF-κB pathway, 
which is activated by a range  
of trigger proteins, including 
TNFR, IL-1R and TLR receptor, 
stimulated the IKK complex 
activation. The IKK complex 
contains catalytic subunits IK- 
Kα and IKKβ and regulatory 
subunit NEMO [85].

CYLD, a tumor suppressor pr- 
otein and a DUB, is known  
to inhibit IKK [12]. CYLD con- 
tains a UBP domain, whose  
activation is associated with  
K63-linked polyubiquitin cha- 
ins, and is usually mutated in 
cylindroma patients [86]. CYLD 
removed the K63 polyubiqui- 

tin chains from a range of NF-κB signaling pr- 
oteins [87]. Experiment results indicated that 
K48-K63 branching was shown to protect the 
K63 linkages from CYLD-mediated deubiquiti-
nation, which suggests that CYLD has a key ro- 
le in deubiquitinating several NF-κB signaling 
proteins [7]. Deficiency of CYDL resulted in the 
expression of pro-inflammatory gene. CYLD-
deficient mice displayed a myriad of pheno-
types, suggesting that CYLD inhibited expres-
sion of IKK and NF-κB [88, 89]. Similar to CY- 
LD, A20, another DUB inhibiting NF-κB, plays  
an important role in regulating inflammatory 
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signal. A20 stimulated by TNF receptors was 
negatively regulating the activation of NF-κB 
signal. Some studies demonstrated that A20, 
as an NF-κB-responsive gene inhibited activa-
tion of NF-κB, which is not only in response to 
TNF receptors, but also including many pro-
inflammatory stimuli such as IL-1, LPS, T- and 
B-cell receptor antigens, NOD2 ligands and 
PRRs activation [90]. With the stimulation of 
TNF-α, mice deficient of A20 are likely to have 
inflammation in multiple organs and defective 
cells, which leads to activation of NF-κB (Ta- 
ble 1). DUB activity of A20 from multiple NF- 
κB signaling intermediates decomposed the 
K63 polyubiquitin. In addition, DUB activity of 
A20 removes K63 polyubiquitin chains from 
RIP1 and TRAF-6 which accordingly inhibits 
NF-κB function [91, 92]. Upon stimulation of 
TNF-α, A20 also mediates ITCH, an HECT 
domain that E3 required for RIP1 degradation, 
to negatively regulate activation of IKK [93]. 
Indeed, many examples illustrated that A20 
gathered from ubiquitinated proteins at TNF- 
R1 signaling complex to modulate ubiquitin-
dependent signal to prevent activation of IKK 
and the downstream signal of NF-κB, suggest-
ing that A20 derived from K63 polyubiquitin 
had a key role in restricting the inflammatory 
responses [94]. There are many other DUB 
operator inhibiting the function of NF-κB path-
way. For example, a new DUB called DUBA has 
shown that TRAF3, detached from K63 poly-
ubiquitination, inhibits the activation of TBK1 
[95] (Table 1). Lots of researches have report-
ed that OTULIN, another DUB, regulates acti- 
vation of LUBAC and LUBAC-mediated NF-κB  
to inhibit the production of M1 polyubiquitin. 
Lacking OTULIN leads to inhibit the TNF-induc- 
ed activation of NF-κB and expression of pro-
inflammatory gene [96] (Table 1). Furthermore, 
the expression of a catalytically inactive OTU- 
LIN C129A mutant which bound the ubiquitin 
and exerted a dominant-negative effect, led  
to negatively regulating activation of NF-κB si- 
gnal [97, 98]. In summary, DUBs play an im- 
portant role in regulating ubiquitination-asso- 
ciated inflammation.

Conclusions

Ubiquitination is a post-translational modifica-
tion that exists in eukaryotic cells which con- 
vey a wealth of information through a variety  
of unique linkage types. More and more studi- 

es demonstrate that ubiquitination plays an 
important role in many diseases and physio- 
logical processes, including cancer and inflam-
matory responses; however, there still lacks full 
understanding of the mechanisms of these  
processes. Inflammatory signal is regulated by 
several of these linkages, including K48, K6 
and K27, especially K63-linked and linear 
chains. Tightly controlled activation of signal- 
ing pathways via regulating different types of 
ubiquitination and modulation of many other 
molecular events by ubiquitination has pro-
found impact on inflammation. Ubiquitin en- 
zymes and DUBs have a crucial role in ubiqui- 
tination, suggesting that how to regulate the- 
se enzymes and illustrate the regulatory me- 
chanisms are important for inflammation. 
NF-κB as a signaling transduction factor, re- 
leased by inflammatory stimulation, is related 
to ubiquitination. In summary, in recent years, 
understanding of ubiquitin as a key role in 
inflammation has greatly increased, but there 
are many existing problems to be solved. For 
example, the specific mechanism of ubiquitin-
modifying enzymes regulates the ubiquitina-
tion-directed molecular signals and their bio-
logical functions, and how to establish a tan- 
dem interaction network between ubiquitina-
tion and other post-translational modifications 
which identified key ubiquitination-associated 
proteins through NF-κB signaling pathway. The 
study is important for human beings to explain 
the mechanism of inflammation.
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