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Abstract: Duchenne muscular dystrophy (DMD) is an X-linked recessive fatal neuromuscular disorder characterized 
by progressive muscle degeneration which affects one in 3500-5000 males born worldwide. DMD is caused by 
loss-of-function mutations in the dystrophin (DMD) gene encoding for dystrophin, a cytoskeletal protein that sup-
ports the structural integrity of myofibers during cycles of muscle contraction and relaxation. DMD patients do not 
only experience skeletal muscle deterioration but also severe cardiomyopathy, which is recognized as the current 
leading cause of death for the disease. Among the therapies being developed, exon skipping using antisense oligo-
nucleotides (AOs) is one of the most promising approaches. AOs effectively restore dystrophin expression in skeletal 
muscles; however, they are highly inefficient in the heart due to endosomal entrapment. Improving skeletal muscle 
function without restoring dystrophin expression in cardiac tissue may exacerbate cardiomyopathy due to increased 
voluntary activity. This review consolidates the preclinical antisense approaches to improve dystrophin restoration, 
with a special focus on the heart. 
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Introduction

Duchenne muscular dystrophy (DMD) is an 
X-linked recessive disorder characterized by 
progressive muscle degeneration [1]. The prev-
alence of DMD is estimated to be 1 in 3500-
5000 live male births, making it the most com-
mon lethal neuromuscular disorder [2, 3]. Pa- 
tients with DMD generally stay asymptomatic at 
birth although they could show signs of delayed 
gross motor development compared to their 
peers [4-6]. The disease progresses rapidly, 
with muscle weakness and wasting observed 
first in the proximal muscles then extending to 
the more distal muscles [7]. Affected boys 
often lose ambulation by the age of 12 and 
experience multiple organ system dysfunction 
such as neuromuscular scoliosis, joint contrac-
ture, osteoporosis, restrictive lung disease, 
obstructive sleep apnea, cardiomyopathy, and 
psychological problems [8-10]. The age of 
onset and the rate of decline are highly variable 
among patients. Due to continuous muscle 

damage, patients with DMD have markedly ele-
vated serum levels of creatine kinase (CK), even 
at birth [11]. Death usually occurs in their 20s 
due to respiratory or cardiac complications 
[11-14].

DMD is caused by mutations in the DMD gene, 
which encodes a membrane-associated protein 
called dystrophin. Dystrophin has 4 domains: 
an actin-binding N-terminal domain, a rod do- 
main consisting of 24 spectrin-like repeat 
motifs for structural flexibility, a cysteine-rich 
domain for facilitating protein-protein interac-
tion, and a C-terminal domain for binding sarco-
lemmal proteins [15, 16]. As a member of the 
dystrophin-glycoprotein complex (DGC), dystro-
phin functions to link the actin cytoskeleton of 
muscle cells to the extracellular matrix, provid-
ing mechanical support and membrane stabili-
zation during muscle contraction and relaxation 
cycles [15, 17-20]. In the absence of dystrophin, 
muscle fibers experience mechanical stress 
and become susceptible to tearing and frag-
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mentation, resulting in degeneration [21, 22]. 
Other studies have suggested that dystrophin 
also serves non-mechanical roles [23]. 

The DMD gene is located on the short arm of 
the X chromosome (Xp21.3-p21.2) spanning 
2.4 Mb with 79 exons which produces a 14 kb 
transcript [24-26]. The DMD gene has 3 main 
promoters that produce full-length dystrophin 
(M, B, and P), with other promoters responsible 
for the transcription of different, smaller iso-
forms [27, 28]. The M promoter produces the 
Dp427m isoform which is expressed in cardiac 
and skeletal muscle, the B promoter produces 
the Dp427c isoform which is expressed in neu-
rons of the cortex and the Cornu Ammonis (CA) 
region of the hippocampus, and the P promoter 
produces the Dp427p isoform which is ex- 
pressed in the Purkinje cells of the brain. Other 
shorter isoforms include Dp260 expressed in 
the retina, Dp140 expressed in the kidney and 
brain, Dp116 expressed in the peripheral 
nerves and Dp71 which is ubiquitously ex- 
pressed [29-33]. 

DMD is considered one of the largest genes in 
the human genome. Furthermore, it is located 
in a genomic region with high rates of recombi-
nation [34-36]. Due to its length and location, 
DMD is highly susceptible to mutation. Ap- 
proximately 60% of DMD cases are due to dele-
tions of one or more exons, ~6% due to duplica-
tions, and the rest due to small insertions/dele-
tions or point mutations [11, 16, 37, 38]. These 
mutations usually disrupt the reading frame or 
introduce a premature stop codon, both of 
which lead to the absence of dystrophin. There 
is no significant correlation between mutation 
size and disease severity [39-41]. Most muta-
tions that maintain the DMD reading frame pro-
duce truncated yet partly functional dystrophin, 
and often result in a milder form of the disease 
known as Becker muscular dystrophy (BMD) 
[42-44]. Although the skeletal muscle symp-
toms are less severe, the majority of BMD 
patients also develop cardiomyopathy, and it is 
the leading cause of death in patients with 
BMD [45].

Cardiomyopathy in DMD patients

The life expectancy for patients with DMD used 
to be less than 20 years of age just two decades 
ago. Due to advancements in ventilator support 
and spinal surgery, the average age of mortality 

has been pushed into the late 20s [12, 13]. 
Since respiratory dysfunction is now better 
managed, cardiomyopathy is presently the lea- 
ding cause of death among DMD patients. 
Cardiomyopathy is estimated to present in 25% 
of patients at the age of 6, and 59% of patients 
at the age of 10 [27, 46]. The majority of 
patients will have developed cardiomyopathy 
by 18 years of age. Recognition of signs and 
symptoms of cardiac dysfunction can be chal-
lenging since DMD patients are usually wheel-
chair-bound and do not perform increased car-
diac workload [47]. The correlation between a 
patient’s genotype and the severity of their car-
diac phenotype remains uncertain [48-52]. 

The earliest clinical signs of cardiomyopathy 
are either decreased systolic function or sinus 
tachycardia, with the latter commonly seen in 
teenage DMD patients [53, 54]. Sinus tachycar-
dia results in elevated heart rate, which in- 
creases the workload of the already deteriorat-
ing dystrophic myocardium [55-57]. Arrhyth- 
mias are a common cardiac involvement in 
patients with DMD and are significantly corre-
lated with decreased heart function. App- 
roximately 44% of DMD patients show signs of 
arrhythmias [58]. Supraventricular tachycardia 
(SVT) and ventricular tachycardia (VT) are 
observed in 10% of individuals with DMD [58]. 
Although DMD cardiomyopathy is routinely 
described as dilated cardiomyopathy (DCM), 
patients with decreased systolic or diastolic 
function do not necessarily show ventricular 
dilation [49, 59, 60]. Additionally, myocardial 
fibrosis usually precedes left ventricular dys-
function (LVD) [61, 62]. The age of onset and 
the rate of progression are variable for LVD. 
However, patients with onset of LVD before 18 
years of age were found to have a significantly 
shorter lifespan compared to those who had 
LVD after 18 years old [48]. Other features of 
DMD cardiomyopathy include abnormal cardiac 
conduction (as caused by, for example, vacuole 
degeneration in the Purkinje fibers), congestive 
heart failure and sudden cardiac arrest [27, 28, 
47, 63-66].  

Myocardial issues in DMD patients are unavoid-
able since dystrophin serves the same func-
tions in cardiomyocytes as in skeletal muscle 
cells [67]. In the absence of dystrophin, cardio-
myocytes experience increased structural vul-
nerability and are susceptible to membra- 
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ne instability and tearing [22]. Cardiomyocyte 
remodeling occurs secondary to myocardial 
wasting, which leads to ventricular enlarge-
ment and fibrosis [68]. As previously men-
tioned, affected hearts do not always show 
signs of ventricular dilation. Another conse-
quence of myocardial tearing and fragmenta-
tion is the dysregulation of ion influx/efflux in 
the heart [69, 70]. Notably, damages to the 
myocardial membrane disrupt Ca2+ homeosta-
sis. Since Ca2+ acts as a second messenger in 
many cellular pathways, Ca2+ dysregulation re- 
sults in multiple downstream abnormalities 
within myocardial tissue. One significant conse-
quence of Ca2+ dysregulation includes increa- 
sed reactive oxygen species (ROS) production 
and mitochondrial dysfunction. Elevated Ca2+ 
levels within cardiomyocytes activate the mito-
chondria to produce ROS which leads to apop-
tosis and further muscle wasting [69-79]. An 
important second messenger affected by Ca2+ 
dysregulation is nitric oxide (NO) which has 
roles in blood flow and vasoregulation [80, 81]. 
Increased intracellular Ca2+ concentrations 
also enhance the risk of Ca-dependent arrhyth-
mias and cellular Ca2+ overload in DMD patients 
[69]. 

Cardiomyopathy in DMD patients is currently 
not curative. Therapies commonly used include: 
corticosteroids, angiotensin-converting enzyme 
inhibitors (ACEIs), angiotensin II receptor block-
ers (ARBs), beta-adrenergic receptor blockers, 
mineralocorticoid receptor antagonists and 

other interventions such as ventricular assist 
devices (VADs) or cardiac transplantation [9, 
47, 82-92]. Treatment with corticosteroids has 
been shown to improve cardiac function. DMD 
patients who received steroids such as pred-
nisolone/prednisone or deflazacort had signifi-
cantly delayed onset of cardiomyopathy, less 
ventricular dilation and systolic dysfunction 
than those who did not. However, patients 
using corticosteroids can experience some 
long-term complications such as weight gain, 
bone fractures, cataracts, etc. [9, 10, 93-96], 
which limits their use for therapy. ACEIs and 
ARBs have proven effective in reducing left ven-
tricular hypertrophy and fibrosis. Furthermore, 
initiation of beta-adrenergic receptor blocker 
treatment along with ACEIs has been demon-
strated to improve left ventricular systolic func-
tion in DMD patients [88, 91, 97]. However, 
most of these studies have their inherent limi-
tations, which makes it challenging for data 
interpretation as well as treatment application 
in clinical settings. 

Antisense oligonucleotides for the treatment 
of DMD

At present, there is no cure for DMD. Current 
treatments are mostly palliative, aiming at alle-
viating the symptoms of the disease [11, 14]. 
Several promising approaches have been in- 
vestigated such as utrophin up-regulation, viral 
gene therapy, cell-based therapy, antisense oli-
gonucleotides (AOs) for exon skipping and, 

Figure 1. Antisense-induced exon skipping in DMD. Deletion of exon 49 and 50 in the DMD gene creates a frame-
shift mutation which results in a premature stop codon and no dystrophin produced. In the case shown, AOs can 
specifically bind to exon 51 and interfere with the splicing machinery to exclude exon 51 from the mature mRNA, 
thereby restoring the reading frame and producing truncated but partly functional dystrophin.
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most recently, CRISPR-Cas9-mediated gene 
editing [69]. In this review, we will discuss the 
use of AOs in the treatment of DMD with a spe-
cific focus on treating the heart. 

AOs are short, synthetic nucleic acid sequenc-
es which bind to complementary target mRNA 
sequences and lead to either endonuclease-
mediated transcript knockdown or splice mod-
ulation [98, 99]. AO-mediated exon skipping 
can correct the reading frame by removing an 
out-of-frame exon or exons from the DMD pre-
mRNA, producing a truncated but partly func-
tional dystrophin protein [100-102] (Figure 1). 
The first generation of AOs has the unmodified 
phosphoribose backbone, making them highly 
susceptible to degradation by nucleases [103, 
104] (Figure 2). Due to their short half-life, first 
generation AOs rarely achieve sufficient intra-
cellular concentrations to have a therapeutic 
effect [105, 106]. Second and third generation 
AOs contain chemically modified structures. 
These modifications not only increase AO re- 

sistance to nuclease degradation, but also 
enhance their pharmacological properties. Al- 
terations at the 2’ position of the ribose sugar 
have yielded a class of AOs with improved safe-
ty and efficacy profiles. 2’-O-methyl (2’-OMe) 
and 2’-O-methoxyethyl (2’-MOE) alkyl substitu-
ents are the most studied members of this 
group. In addition, the use of a phosphorothio-
ate backbone which contains a sulfur in a non-
bridging location on the phosphate backbone 
significantly improves AO nuclease resistance 
and binding affinity to serum proteins [98, 107-
109]. Antisense chemistries that contain both 
a phosphorothioate backbone and a 2’-alkyl 
substituent, such as 2’-OMe-phosphorothioate 
(2’OMePS) AOs, have shown several favorable 
properties compared to their unmodified coun-
terparts [105, 110-113]. The phosphodiester 
backbone can also be replaced with a polyam-
ide structure made up of repeating N-(2-
aminoethyl) glycine units, which has given rise 
to another class of AOs termed peptide nucleic 
acids (PNAs) [114]. This new class of AO can 

Figure 2. Chemical structures commonly used in antisense therapy. (A) RNA, (B) 2’-OMe-phosphorothioate, (C) Tricy-
clo-DNA, (D) Phosphorodiamidate morpholino oligomers. X or Y can be a peptide; Y can be an octaguanidine moiety 
(E) as seen in Vivo-morpholino.
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sterically block splicing factors, inhibit ribo-
some recruitment and bind non-coding RNAs, 
thereby further expanding therapeutic potential 
[69]. 

Among these next-generation chemistries, ph- 
osphorodiamidate morpholino oligomers (PM- 
Os) represent the most advanced use of anti-
sense therapy for DMD. PMOs have the deoxy-
ribose/ribose moiety replaced by a morpholine 
ring, and the charged phosphodiester inter-
subunit linkage replaced by an uncharged 
phosphorodiamidate linkage, making PMOs 
nuclease-resistant and charge-neutral [115, 
116]. One of the challenges with using nucleic 
acid-based molecules as therapeutics is their 
stability and potential toxicity in cells. The 
advantage of being charge-neutral, as in the 
case of PMOs, is that this imparts an even 
greater resistance to nucleases, which typically 
target charged molecules. Additionally, due to 
the lack of charge, PMOs are safer since they 
are unlikely to activate Toll-like receptors, a 
class of receptors involved in producing innate 
immune responses against pathogenic materi-
al [117]. In fact, a PMO targeting DMD exon 51, 
called eteplirsen or Exondys 51 (Sarepta 
Therapeutics, Cambridge, MA, USA), was condi-
tionally approved by the U.S. Food and Drug 
Administration (FDA) in 2016, and several 
PMOs targeting other DMD exons, including 
golodirsen or SRP-4053 (Sarepta Therapeutics) 
and NS-065/NCNP-01 (NS Pharma, Paramus, 
NJ, USA) are currently undergoing clinical trials 
[118-121]. 

Although AOs effectively rescue dystrophin 
expression in skeletal muscles, they are highly 
inefficient in cardiac muscles [122, 123]. 
Failure to restore dystrophin expression in the 
heart in the presence of rescued dystrophin in 
skeletal muscles can exacerbate cardiac issues 
due to increased patient voluntary activity 
[124, 125]. The major barrier to effective use of 
AOs in therapy is the delivery of antisense drugs 
to their intracellular targets. Upon reaching the 
cell surface, AOs are internalized by endocyto-
sis. A variety of cell-surface receptors have 
been suggested to bind AOs and facilitate their 
entry into the cell including integrins, scavenger 
receptors and Toll-like receptors [126-128]. 
Regardless of the endocytosis route taken, AOs 
entering a cell will encounter an intricate net-
work of membrane compartments that include 
early and recycled endosomes, late endosomes 

and multi-vesicular bodies (MVBs), and lyso-
somes. Most AOs are initially delivered to early 
endosomes. Subsequently, they can be traf-
ficked to lysosomes for degradation or seques-
tered in late endosomes/MVBs. Antisense dru- 
gs trapped within endomembrane compart-
ments are pharmacologically inactive as they 
remain separated from their target sites by 
membrane barriers [106, 129]. Nevertheless, 
a small portion of AOs escapes endosomes and 
only then can they reach their targets and 
become pharmacologically active. The concept 
of endosomal escape has been widely accept-
ed as the most important barrier to the effec-
tive use of antisense drugs [127, 130]. Im- 
portantly for developing heart-effective AOs, 
the research found that AOs (particularly PMOs) 
tend to be trapped in endosomes in cardiomyo-
cytes more than in skeletal muscle cells [131]. 
Since cardiomyopathy is the leading cause of 
death in DMD patients, researchers have 
looked into different approaches to enhance 
delivery of AOs to cardiac tissues. The next sec-
tion will discuss some of the most promising 
approaches to improving AO efficacy for treat-
ing the heart. 

Strategies to improve the efficacy of antisense 
drugs for the treatment of cardiomyopathy in 
DMD patients

Tricyclo-DNA

In the late nineties, a novel class of AOs known 
as tricyclo-DNAs (tcDNAs) was shown to display 
unique pharmacological properties. tcDNA is a 
conformationally-constrained DNA analog that 
deviates from the natural DNA structure by the 
presence of an ethylene bridge connecting C3’ 
and C5’ [132-134]. tcDNA shows enhanced 
RNA affinity and nuclease resistance, as well 
as the inability to elicit RNase H activity [135-
138]. Furthermore, tcDNAs can spontaneously 
form defined nanoparticles which potentia- 
lly improves delivery and cellular uptake com-
pared to other antisense chemistries [139- 
141]. 

In a study by Goyenvalle and colleagues, a 
mouse model carrying a nonsense mutation in 
exon 23 of the Dmd gene (hereafter referred to 
as mdx mice) was injected intravenously with a 
15 nucleotide long (15-mer) tcDNA-AO that tar-
gets the skipping of Dmd exon 23 [139]. 
Treatment with 200 mg/kg/week of the drug 
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for 12 weeks rescued up to 40% of wild type 
(WT) dystrophin expression in the heart. 
Additionally, tcDNA-treated mice showed signif-
icantly higher levels of dystrophin rescue, espe-
cially in the diaphragm and the heart, com-
pared to those treated with PMO and 2’-OMe 
AOs at an equimolar dosage. Similar results 
were observed in a dystrophin/utrophin double 
knockout mouse model where treatment with 
weekly intravenous (IV) injections of 200 mg/
kg of tcDNA over a period of 5-20 weeks 
restored 53% of WT dystrophin levels in the 
heart. Treatment with tcDNA also ameliorated 
cardiac systolic function as demonstrated by 
improved ventricular ejection fractions and 
shortening fractions in echocardiography.

One of the advantages of tcDNA is its increased 
RNA binding affinity. Due to this feature, shorter 
tcDNAs can be designed, reducing the mass of 
AOs administered and potential AO-induced 
toxicity while retaining their therapeutic effect. 
To investigate the efficacy of shorter tcDNAs, 
mdx mice were injected intravenously with a 
13-mer tcDNA targeting Dmd exon 23 at 200 
mg/kg/week for 12 weeks. The 13-mer tcDNA 
induced particularly high levels of exon skip-
ping and restored dystrophin in the heart as 
shown by RT-PCR, Western blotting and immu-
nostaining. The safety profile of the treatment 
also showed that tcDNAs were well-tolerated, 
with only minimal renal toxicity and liver inflam-
mation observed [138]. Although tcDNAs have 
the potential to rescue dystrophin in cardiac tis-
sue, treatment with these AOs requires high 
dosage and multiple dose administrations. 

Peptides

Among the various delivery systems studied, 
cell-penetrating peptides (CPPs) have gained 
the most considerable interest. CPPs are com-
posed of cationic and/or amphipathic amino 
acids that are capable of delivering a wide 
range of nucleic acid-based molecules both in 
vitro and in vivo [142-144]. These peptides 
either possess natural translocating properties 
or were engineered by combining different pro-
tein domains to have these properties [145]. 
Many studies have investigated peptide-conju-
gated AOs for the potential treatment of DMD. 
This review will discuss some of the most prom-
ising approaches, namely: arginine-rich pep-
tides, B peptides, PNA/PMO internalization 
peptides (Pips), and phage peptides. Not all 

experiments are mentioned in this paper, but a 
selected few will be discussed for each 
approach. 

The (RXR)4 peptide (with R standing for arginine 
and X standing for aminohexanoic acid) was the 
first arginine-rich CPP tested in the mdx model 
of DMD [146]. In a study by Yin and colleagues, 
(RXR)4 peptides were conjugated to PMOs tar-
geting Dmd exon 23. A single IV injection at 25 
mg/kg via tail vein resulted in ~50% exon 23 
skipping in the heart of treated mice. A wide-
spread, uniform distribution of dystrophin-posi-
tive fibers was also observed in cardiac tissue 
as shown by immunostaining. Western blot 
analysis demonstrated dystrophin restoration 
at levels between 10 and 20% of that found in 
the WT mouse heart. Even at lower doses 
administered (weekly injections at 6 mg/kg for 
3 weeks), dystrophin restoration was still 
observed in cardiac tissue as shown by immu-
nostaining and Western blotting. 

Subsequently, another arginine-rich peptide, 
named the B-peptide, demonstrated high lev-
els of exon skipping in various muscles includ-
ing the heart. The B-peptide contains arginine, 
aminohexanoic acid and beta alanine (abbrevi-
ated B) in an (RXRRBR)2 sequence [147-149]. A 
single IV injection at 30 mg/kg of B-peptide-
conjugated PMO (PPMO) restored 94% of dys-
trophin expression in cardiac muscle fibers of 
treated mdx mice by immunohistochemistry, 
50% of WT dystrophin levels by Western blot, 
and 63% exon 23 skipping by RT-PCR. Repeated 
treatment for 3 months at the same dose at 
biweekly intervals further improved dystrophin 
restoration in cardiac muscle. Skipped tran-
script levels increased to 72%. Immunohis- 
tochemistry and Western blot demonstrated 
dystrophin rescue at levels comparable to that 
in WT hearts. Dystrophin restoration was also 
observed in the muscles of the atria and large 
vessels such as the aorta or vena cava and the 
pulmonary arteries. PPMO treatment signifi-
cantly improved cardiac function and prevent-
ed cardiac failure under dobutamine stress 
[150]. A PPMO cocktail was also shown to 
restore dystrophin expression in the myocardi-
um and cardiac Purkinje fibers, and improve 
cardiac conduction abnormalities in a canine 
model of DMD [151]. 

Another promising class of CPPs is the Pips. 
Pips are a novel series of transduction peptides 
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developed from mutagenesis and functional 
studies of a derivative of Penetratin, with the 
six arginine residues added to the N terminus 
of the CPP (R6Pen) [152]. Penetratin is origi-
nally derived from the homeobox peptide of 
Drosophila Antennapedia. The CPPs in the Pip 
series are characterized by a central hydropho-
bic motif anchored on each side by arginine-
rich sequences similar to that of the B-peptide 
which contains arginine, aminohexanoic acid, 
and beta-alanine residues. Among the highly 
efficient members of this series are Pip5 and 
Pip6, both of which have demonstrated high 
levels of dystrophin restoration in various mus-
cles including the heart [153, 154]. A single IV 
injection of 25 mg/kg of Pip5e-PMO (a member 
of the Pip5 family) induced almost complete 
exon skipping in cardiac tissue where full length 
uncorrected transcript was barely detectable. 
Immunohistochemistry data revealed more 
than 90% of dystrophin-positive fibers in cardi-
ac muscle. Dystrophin restoration was further 
confirmed by Western blot which revealed more 
than 50% of WT dystrophin levels in the heart 
[153]. Modifications to the central hydrophobic 
core of the Pip5 peptide gave rise to a novel 
derivative of the Pip series, consecutively 
named Pip6. When directly compared to Pip5e-
PMO treatment, a member of the Pip6 family 
exhibited significantly higher dystrophin resto-
ration in the heart of treated mice at very low 
doses (12.5 mg/kg). The Pip6 series have also 
been demonstrated to prevent exercise-
induced cardiomyopathy following Pip-PMO 
treatment in dystrophic mice [154]. 

While the above-mentioned CPPs work well for 
neutral AOs like PMOs, it is challenging to con-
jugate positively charged peptides to negative-
ly-charged AOs such as 2’OMePS due to the 
presence of strong electrostatic interactions. In 
an effort to find uncharged CPPs, Jirka and  
colleagues screened a phage display peptide 
library and identified a 7-mer peptide (P4) that 
significantly enhanced AO uptake in cardiac tis-
sue [155]. Dystrophic mdx mice were injected 
subcutaneously with 200 mg/kg/week doses 
of 2’OMePS-P4 conjugate targeting mouse 
Dmd exon 23 for 6 weeks. Treatment with pep-
tide-conjugated AOs resulted in enhanced exon 
skipping efficacy with a significant difference in 
cardiac tissue compared to naked AOs, possi-
bly due to improved uptake in cardiac muscle. 
The safety profile of the peptide conjugate was 

also evaluated and no significant changes were 
detected for liver and kidney damage. This 
result is encouraging since the phage peptides 
could be used as an alternative to arginine-rich 
peptides, which have shown toxicity in higher 
animals [156-158].  

Octaguanidine morpholino

In an effort to improve the efficacy of AO sys-
temic delivery and to reduce the immunogenic-
ity of cell penetrating peptides, dendrimeric 
octaguanidine moieties have been conjugated 
to PMOs to form a new class of AOs named 
Vivo-Morpholinos or vPMOs [150, 159]. 

The guanidine groups in vPMOs work similarly 
to the arginine-rich CPPs found conjugated to 
PMOs. As such, vPMOs have been shown to 
induce high levels of dystrophin expression es- 
pecially in the heart [149]. Additionally, the 
combination of a synthetic scaffold and multi-
ple unnatural side chains makes vPMOs unlike-
ly to elicit an immune response, thus allowing 
for multiple administrations to maintain ade-
quate levels of dystrophin in the body [160]. 

vPMOs have been shown to rescue cardiac dys-
trophin expression in vivo [161]. A single IV 
injection of a vPMO targeting mouse Dmd exon 
23 (Vivo-ME23) at 6 mg/kg resulted in a strong 
dystrophin signal in a significant number of car-
diomyocytes in mdx mice. Repeated treatment 
at the same dose for five times biweekly res-
cued dystrophin expression in more than 40% 
of cardiomyocytes as observed by immunos-
taining. Western blot showed dystrophin rescue 
to approximately 10% of normal levels in cardi-
ac muscles. vPMOs have also been shown to 
restore dystrophin expression in a canine mo- 
del of DMD, however, no systemic injection was 
performed so whether vPMOs can rescue dys-
trophin in canine cardiac tissues remains to be 
determined [162]. Regardless, these encourag-
ing results represent an important step forward 
in our effort to overcome the challenges associ-
ated with the delivery of AOs to the heart. 

Ultrasound and microbubbles

Another promising approach for improving AO 
delivery to cardiac tissue is the use of ultra-
sound in combination with contrast-enhancing 
microbubbles [163]. Microbubbles are used to 
carry the drugs to an area of interest, then 
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ultrasound is applied to burst the microbub-
bles, resulting in tissue-specific delivery of the 
therapeutic materials [164-167]. Ultrasound 
exposure improves the efficacy of intracellular 
delivery due to a phenomenon known as sono-
poration or cellular sonification. This effect cre-
ates transient pores in the cellular plasma 
membrane by a process known as inertial cavi-
tation, thus allowing bioactive materials to 
enter the cells. Inertial cavitation is enhanced 
by using microbubbles of contrast agents [164, 
167-170]. AOs can be mixed with or incorporat-
ed into microbubbles in a number of ways such 
as binding to the microbubble shell or using 
site-specific ligands. The combination of ultra-
sound and microbubbles not only improves 
intracellular delivery but also reduces the 
amount of drugs used systemically thereby le- 
ssening the potential toxicity and side effects 
of treatment. 

In order to investigate the microbubble proper-
ties that are important for influencing drug 
delivery efficacy in vivo, PMOs targeting Dmd 
exon 23 of the mdx mouse were injected sys-
temically at 16 mg/kg via the tail vein [171]. 
PMOs were incorporated into three different 
commercially available microbubbles: Sona- 
zoid, Optison, and SonoVue. Ultrasound was 
then applied to the heart for two minutes after 
injections. Treated hearts were collected 24 
hours or one-week post injection. Of the three 
microbubbles tested, Sonazoid and Optison 
induced significant amounts of dystrophin-pos-
itive fibers in cardiac tissues. Treatments with 
PMOs only (no ultrasound or microbubbles) 
were ineffective in terms of restoring dystro-
phin in cardiomyocytes. Microbubbles were 
also found to increase AO delivery to the heart 
in a dose-dependent manner. Histological anal-
ysis showed no signs of tissue damage or 
observable morphological differences between 
samples treated with ultrasound and microbub-
bles and non-treated controls. Additionally, 
microbubble stability was determined to be the 
major factor affecting the efficiency of thera-
peutic drug delivery. 

Nanoparticles 

In order to improve AO stability and enable the 
use of lower AOs concentrations in vivo, AO 
delivery using nanoparticles was developed 
and demonstrated to be another promising 
approach. Two classes of nanoparticles, T1 and 

ZM2, have been shown to restore dystrophin 
expression in the heart of mdx mice [172, 173].  

T1 nanoparticles are a type of cationic core-
shell nanospheres, made up of a core of poly-
methylmethacrylate (PMMA) and surrounded 
by a shell of cationic groups, which facilitates 
the binding of charged AOs. In a study by 
Rimessi and colleagues, T1 nanoparticles were 
demonstrated to deliver 2’OMePS AOs and 
induce dystrophin rescue in body-wide striated 
muscles. AOs targeting the boundary sequenc-
es of exon and intron 23 of mouse Dmd (M23D) 
were conjugated with T1 nanoparticles, and 
delivered by weekly intraperitoneal (IP) injec-
tions at 2.7 mg/kg to mdx mice [172]. T1 
nanoparticles showed a wide distribution in the 
body, including the heart. At one week post-
injection, immunohistochemical analysis of 
treated mice showed the presence of dystro-
phin-positive cardiomyocytes in various areas 
of the heart. Dystrophin was however undetect-
able in cardiac tissues 6 weeks after the last 
injection. Total and skipped dystrophin tran-
script levels in the hearts of treated mice were 
also significantly increased with 80% and 16% 
more transcripts, respectively. Although dystro-
phin was undetected in the heart by Western 
blot, the results were positive considering a sig-
nificantly reduced dose compared to previous 
studies. From a safety aspect, T1 nanoparticles 
may cause adverse effects due to their slow 
biodegradability, indicating a possibility of 
accumulative toxicity for long-term treatments 
[172]. Also, T1 nanoparticles can form small 
aggregates and are therefore not suitable for IV 
injections. 

To improve the efficacy of T1 nanoparticles, a 
more efficient class of nanoparticles termed 
ZM2 was designed [173]. ZM2 nanoparticles 
are composed of a PMMA core and a random 
copolymer shell consisting of units derived 
from N-isopropylacrylamide+ (NIPAM) and reac-
tive methacrylate-bearing cationic groups. mdx 
mice were injected IP weekly for 7 weeks at 7.5 
mg/kg with M23D AOs loaded onto ZM2 
nanoparticles. Immunohistochemical findings 
showed 3% by manual count and 6% by semi-
automated count of dystrophin-positive signal 
in the heart. Dystrophin was also detectable, 
though faintly, in the heart of ZM2-M23D treat-
ed mice via Western blot. However, dystrophin 
was not detectable in the heart at 3 months 
post-injection as demonstrated in a follow-up 
study.
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Polymers

Different series of polymers were investigated 
for their ability to improve the delivery of AOs in 
vitro and in vivo. The first class is a series of low 
molecular weight polyethylenimine (LPEI) conju-
gated pluronic copolymers (PCMs) [174]. Am- 
phiphilic pluronic, poly (ethylene oxide)-b-poly 
(propylene oxide)-b-poly (ethylene oxide) (PEO-
PPO-PEO triblock copolymer) has been used 
widely as a pharmaceutical adjuvant and a free 
adjuvant for gene delivery. Depending on the 
molecular weight, hydrophilic-lipophilic balance 
(HLB), and other characteristics of the pluron-
ics, PCMs can have different AO delivery effi-
ciencies and toxicities. In a study by Wang and 
colleagues, mdx mice were injected intrave-
nously with 0.4 mg of PCMs and 2 mg of PMOs 
targeting the boundary sequences of exon and 
intron 23 of mouse Dmd gene (PMOE23), or 2 
mg of PMOE23 only as the control. Two weeks 
after injection, dystrophin was not detectable 
in cardiac muscle of control mice, while immu-
nohistochemistry showed membrane-localized 
dystrophin in more than 5% of cardiomyocytes 
in some areas of the heart from treated mice. 
Treatment also demonstrated no detectable 
toxicity in muscles, liver, and kidneys after sys-
temic administration. 

Another class of amphiphilic polymers, termed 
Z polymers, is constructed from Tween 85 and 
LPEI [175]. Based on preliminary results, two Z 
polymers Z7 and Z8 were selected for systemic 
injection. Dystrophic mdx mice were treated by 
IV injection with 1 mg Z7/1 mg PMO complex, or 
0.5 mg Z8/1 mg PMO conjugate, or 1 mg PMO 
as a control. Dystrophin expression was not 
detected in the PMO-only group, however, 
Z8-PMO treated mice demonstrated mem-
brane-localized dystrophin-positive fibers in 
some areas of the heart. No adverse effects 
were observed in systemic delivery under the 
experimental conditions. The mechanism/s by 
which amphiphilic polymers improve gene 
transfer is/are not fully understood. Their hydro-
phobic interaction with cell membranes could 
reduce membrane viscosity and facilitate the 
entry of AOs [173]. Amphiphilic polymers could 
also prevent nonspecific binding of AOs to 
charged extracellular components, thus 
increasing the effective concentrations of ther-
apeutic drugs. 

Conclusion

To summarize, with the exception of tricyclo-
DNAs, naked AOs are generally ineffective in 
treating the heart. Conjugation to CPPs, espe-
cially arginine-rich peptides and the Pip series, 
appears to be a promising approach to improve 
AO uptake and dystrophin restoration in cardi-
ac tissue. However, the practicality of CPPs in 
the clinical setting remains to be determined 
largely due to concerns over our complex 
immune system. Phage peptides and octagua-
nidine moieties were developed in an effort to 
reduce the immunogenicity of arginine-rich 
peptides, however, they have been less suc-
cessful in rescuing dystrophin in systemic deliv-
ery of antisense drugs to the heart. Other non-
covalent conjugation approaches such as the 
use of nanoparticles, polymers, or ultrasound 
and microbubbles are promising strategies to 
enhance the efficacy of AOs in cardiac tissue, 
especially for charged antisense chemistries. 
With a growing number of AO-based approach-
es being investigated, antisense therapy holds 
the potential to improve the treatments for 
DMD patients, with special focus on cardiac 
aspects of the disease. 

Tricyclo-DNA clearly appears as a promising 
chemistry for the antisense therapy of DMD-
associated cardiomyopathy due to its unique 
pharmacological properties and high therapeu-
tic potential. Besides their ability to improve 
delivery and uptake into cardiac tissue, tcDNAs 
can also cross the blood-brain barrier at low 
levels after systemic administration [139]. 
Along with other distinctive properties, this out-
standing feature opens up more therapeutic 
options for other neuromuscular and neurode-
generative disorders such as spinal muscular 
atrophy and Huntington’s disease [135]. 
Although the safety profile of tcDNAs has been 
evaluated, observed toxicities were ascribed 
more to the phosphorothioate linkages rather 
than the tcDNA chemistry itself [138]. More 
extensive toxicological studies are recommend-
ed to assess the full safety profile of this prom-
ising chemistry. Given its positive performance 
in the preclinical phase, the evaluation of tcD-
NAs in human clinical trials seems to be the 
most logical next step. Similar to other chemis-
tries, the outcome essentially depends on how 
well tcDNAs will be tolerated in patients.
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An active body of research on DMD has signifi-
cantly broadened our knowledge on the pathol-
ogy as well as potential therapeutic treatments 
for the disease. To this day, DMD is still an 
invariably fatal disease that affects the whole 
body. It is, therefore, essential to focus on treat-
ments for individual systems such as the heart. 
Advances in the understanding of antisense 
therapy have provided a strong foundation for 
the transition of AOs drugs from the lab bench 
to the clinic. However, delivery and uptake in 
cardiac tissue remain the key limiting factor in 
the bioavailability of AO-based therapies for the 
treatment of DMD. Perhaps more basic 
research into understanding the underlying 
mechanism of these processes is needed to 
overcome this major obstacle. Up to this point, 
clinical trials have focused mostly on the effi-
cacy of AOs treatments on skeletal muscle, 
without much emphasis on the heart. Given 
how cardiomyopathy is currently the leading 
cause of death in patients with DMD, an 
increased focus on treatments for the heart is 
very much needed. In 2017, a clinical trial 
investigating the efficacy of a peptide-conjugat-
ed version of eteplirsen was initiated. The trial 
is expected to be completed in January 2019. 
With the promising results shown by peptide 
conjugated AOs in pre-clinical studies, it would 
be exciting to see the therapeutic outcome of 
the trial, particularly the cardiac aspects of it. 
Hopefully, these efforts will facilitate the prog-
ress of therapeutic development so that one 
day DMD will no longer be as devastating a dis-
ease as it is now.
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