
Am J Transl Res 2020;12(3):847-856
www.ajtr.org /ISSN:1943-8141/AJTR0100165

Original Article
Concurrent inhibition of ErbB family and MEK/ERK  
kinases to suppress non-small cell  
lung cancer proliferation 

Xiaofeng Lin1,3*, Jipei Liao1*, Xinyan Geng1, Hancai Dan1,2, Long Chen3

1Marlene and Stewart Greenebaum Comprehensive Cancer Center, 2Department of Pathology, University of 
Maryland School of Medicine, Baltimore, MD, USA; 3Guangxi Medical University, Nanning, Guangxi, China. *Equal 
contributors.

Received July 26, 2019; Accepted January 28, 2020; Epub March 15, 2020; Published March 30, 2020

Abstract: Lung cancer ranks as the most common cancer and leading cause of cancer-related deaths worldwide. 
Of all lung cancer types, non-small cell lung cancer (NSCLC) accounts for 85 percent of all cases. The high mortality 
of NSCLC occurs mainly because of poor prognosis in patients with recurrent and metastatic cancer. Cisplatin-con-
taining chemotherapy is the first option to treat recurrent and metastatic NSCLC. Additionally, targeted therapy plays 
an important role to prolong life in patients. Currently, EGFR inhibitors are the most important targeted anti-cancer 
drugs for patients with EGFR mutations in the clinical setting. Another important kinase inhibitor for targeted ther-
apy is the MEK inhibitor, Trametinib, which is often used for patients with BRAF mutation or MEK/ERK activation in 
the tumors. In this study, we determined whether a combination of the pan-ErbB kinase inhibitor, Afatinib, and MEK 
inhibitor, Trametinib, could more effectively inhibit NSCLC cell proliferation when compared to either single treat-
ment. We found that Afatinib inhibited phosphorylation of EGFR, HER2, HER3, and HER4, as well as Akt, whereas it 
elevated ERK phosphorylation. Conversely, Trametinib treatment led to ERK inhibition, but induced Akt phosphoryla-
tion. However, the combination of Afatinib and Trametinib inhibited all of the above-mentioned signaling pathways 
and synergistically suppressed cell proliferation. Our data indicate that co-targeting of ErbB family and MEK/ERK 
pathways through a combination of Afatinib and Trametinib could be a potential effective strategy to treat NSCLC. 
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Introduction

Lung cancer is the one of the most common 
cancers in the United States and the leading 
cause of cancer-related deaths worldwide [1, 
2]. Lung cancers consist of several types based 
on the microscopic appearance of the cancer 
cells, which include small cell lung cancer 
(SCLC) and non-small cell lung cancer (NSCLC) 
[2, 3]. NSCLC comprises about 85-90% of all 
lung cancer cases and accounts for the major 
cause of lung cancer deaths. The main treat-
ment options for NSCLC include surgery, radia-
tion therapy, chemotherapy, targeted therapy, 
and immunotherapy. Surgery and/or radiation 
therapy achieve positive outcomes for patients 
with early stage tumors (Stages I and II). For 
patients with locally advanced disease (Stage 

III), chemotherapy combined with surgery and 
radiation therapy appears to be the best option. 
For metastatic or recurrent disease, chemo-
therapy, targeted therapy, or a combination 
would be the primary choice [4-7]. 

Currently, the major targeted therapy for NSCLC 
is to target epidermal growth factor receptor 
(EGFR) because many NSCLC cells have EGFR 
amplifications or mutations that play crucial 
roles in advanced NSCLC [8-10]. These drugs 
include Gefitinib and Erlotinib, which target 
EGFR, and Afatinib and Dacomitinib, which tar-
get EGFR, HER2, and HER4 [11-15]. It is expect-
ed that Afatinib or Dacomitinib may more effec-
tively suppress NSCLC cell growth because it 
can target more ErbB family members. However, 
clinical results demonstrate that while EGFR 
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inhibitors can shrink tumors for several months, 
the disease will eventually progress [6, 11-14, 
16-18]. Thus, we must define the mechanisms 
by which NSCLC cells develop resistance to 
EGFR inhibitor treatment. 

Some NSCLC cells have changes in the BRAF 
gene, which leads to activation of the MAPK/
ERK pathway (also known as the Ras-Raf-MEK-
ERK pathway) to regulate NSCLC growth. 
Recently, multiple MEK inhibitors have been 
reported to inhibit NSCLC in vitro and in vivo 
[19-21]. An important MEK inhibitor, Trametinib, 
has recently acquired FDA approval for use in 
NSCLC therapy [9, 10, 15, 22-24]. It would be 
interesting to test whether Trametinib alone, or 
in combination with another targeted drug, 
could suppress NSCLC even for patients with-
out BRAF changes.

In this study, we set out to investigate the 
molecular links between EGFR and its down-
stream targets, such as the PI3K/Akt, mTOR/
S6K/S6, and MEK/ERK pathways following 
treatment with EGFR or MEK inhibitors. 
Specifically, we wanted to determine whether a 
combination of the EGFR inhibitor, Afatinib, with 
the MEK inhibitor, could more effectively sup-
press NSCLC growth when both were used for 
NSCLC therapy. We found that Afatinib inhibited 
all ErbB family members, including EGFR, 
HER2, HER3, and HER4, as well as Akt, where-
as it elevated ERK phosphorylation levels. 
Conversely, Trametinib inhibited ERK but led to 
induction of Akt phosphorylation in multiple 
NSCLC cell lines. A combination of Afatinib and 
Trametinib inhibited all the above signaling 
pathways and led to increased inhibition of cell 
proliferation. These results suggest that the 
combination of Afatinib and Trametinib could 
be an effective strategy to treat NSCLC. 

Materials and methods

Cell lines

NSCLC cell lines A549 and NCI-H522 were gen-
erous gifts from Dr. Feng Jiang (Department of 
Pathology, University of Maryland, Baltimore, 
MD) and Drs. Yuping Mei and Li Mao 
(Department of Oncology and Diagnostic 
Sciences, University of Maryland School of 
Dentistry, Baltimore, MD), respectively. A549 
cells were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) and NCI-H522 in 
RPMI-1640, and both were supplemented with 
10% fetal bovine serum (FBS), 2 mM glutamine, 
and 100 U/mL penicillin and streptomycin 
(Gibco). 

Reagents and antibodies

Protease and phosphatase inhibitors were pur-
chased from Roche. Afatinib and Trametinib 
were purchased from Selleckchem. Antibodies 
against phospho-EGFR-Y1068 (CST-3733), 
phospho-HER2-Y1248 (CST-2247), HER2 (CST-
4290), phospho-HER3-Y1289 (CST-2842), 
HER3 (CST-12708), phospho-Akt-S473 (CST-
4508), Akt (CST-2938), phospho-S6K-T389 
(CST-9206), S6K (CST-9202), phospho-S6 
(CST-2211), S6 (CST-2317), phospho-ERK-
T202/Y204 (CST-4370), ERK (CST-4348), 
cleaved caspase 3 (CST-9664 and CST-9662), 
and GAPDH (CST-5174) were purchased from 
Cell Signaling. Anti-EGFR (SC-03) was pur-
chased from Santa Cruz Biotechnology.

Cell lysis and western blot analysis

Cells were lysed and Western blot analysis was 
performed as described previously [25]. 

Cell proliferation assays

Sulforhodamine B (SRB) cytotoxicity assays 
were performed to test the effects on cell 
growth following treatment with Afatinib, 
Trametinib, or a combination, according to pre-
viously published protocols [26]. 

Measuring apoptosis with annexin V/prop-
idium iodide staining

Cells were trypsinized, washed with PBS and 
Annexin V binding buffer, and re-suspended in 
1 mL Annexin V binding buffer. Cells were then 
stained with 0.5 μL of Annexin V and 0.7 μL of 
propidium iodide (PI) for 15 minutes at room 
temperature. Stained cells were then analyzed 
by flow cytometry on the BD FACSCanto II™ Cell 
Analyzer (BD Biosciences). The data were ana-
lyzed using FCS Express 6 software. 
Experiments were performed twice in triplicate 
and statistical analysis was performed.

Statistical analysis

Data are presented as mean ± SD. Statisti- 
cal analysis was performed using GraphPad 
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panel), as well as Akt, S6K, and S6, but elevat-
ed ERK phosphorylation in a dose-dependent 
manner (Figure 1B, right panel). Our data indi-
cated that Afatinib inhibited ErbB family mem-
bers, and subsequently inhibited the Akt/mTOR 
pathway, whereas it induced the MEK/ERK 
pathway in NSCLC cells. 

MEK inhibitors inhibit ERK but elevate the 
PI3K/Akt/mTOR cascade

Trametinib is a MEK inhibitor that recently 
gained FDA approval to treat NSCLC patients 
with RAS/BRAF mutations or amplifications 
[32-36]. We treated A549 cells with increasing 
doses of Trametinib and determined its effect 
on Akt and ERK phosphorylation. Trametinib 
led to dose-dependent inhibition of ERK phos-
phorylation, whereas it induced Akt phosphory-
lation (Figure 2A). In addition, Trametinib par-
tially inhibited phosphorylation of S6K and S6, 
two downstream targets of mTOR (Figure 2A). 
To confirm our results, we also determined the 
effects of other MEK/ERK inhibitor treatments 
on phosphorylation of ERK and Akt, as well as 
the mTOR pathway. PD0325901 is a novel MEK 
inhibitor that is currently under clinical trials for 
use in treatment of multiple cancers [37-40]. 
Consistent with the Trametinib treatment data, 
PD0325901 inhibited ERK activation, but led to 
elevated Akt phosphorylation. Likewise, the 
phosphorylation of S6K and S6 was also inhib-

Prism, version 7.04 (GraphPad Software, Inc.). 
P values < 0.05 were considered statistically 
significant (*P < 0.05; **P < 0.01; ***P < 
0.005).

Results

Afatinib inhibits ErbB family members, but in-
duces the MEK/ERK pathway in NSCLC cells

Previous studies have shown that Afatinib inhib-
ited EGFR, HER2, and HER4 [27-31]. We treated 
NSCLC cell line A549 with increasing doses of 
Afatinib for 24 hours and measured its effects 
on the phosphorylation of EGFR, HER2, HER3, 
and HER4. We found that Afatinib treatment 
dramatically inhibited phosphorylation of EGFR, 
HER2, HER3, and HER4 (Figure 1A, left panel). 
Consistent with this inhibition, phosphorylation 
of Akt, S6K, and S6 was also significantly inhib-
ited, which indicated that Afatinib could inhibit 
the Akt/mTOR/S6K/S6 signaling pathway 
(Figure 1A, right panel). Interestingly, ERK 
phosphorylation was not inhibited at doses of 
2.5 or 5.0 µM, but was induced at 10 µM 
(Figure 1A, right panel). In order to confirm our 
results in A549 cells, we also treated NCI-H522 
cells, another NSCLC cell line, with similar 
doses of Afatinib for 24 hours and tested the 
effects on the same signaling pathways. 
Consistently, Afatinib inhibited phosphorylation 
of EGFR, HER2, HER3 and HER4 (Figure 1B, left 

Figure 1. Inhibition of ErbB family members including EGFR, HER2, HER3, and HER4, as well as the Akt/mTOR sig-
naling pathway, and induction of the ERK pathway by Afatinib in NSCLC cells. (A and B) Cell lysates from A549 cells 
(A) and H522 cells (B) treated with increasing doses of Afatinib for 24 hours were prepared and phosphorylation and 
total levels of EGFR, HER2, HER3, and HER4 (left panel), and Akt, S6K, S6, and ERK (right panel), as well as GAPDH 
expression, were detected by Western blot. 
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ited by PD0325901 treatment (Figure 2B). 
Next, we determined the effects of Trametinib 
or PD0325901 on the phosphorylation of ERK, 
Akt, S6K, and S6 in NCI-H522 cells. Intere- 
stingly, Trametinib (Figure 2C) and PD0325901 
(Figure 2D) inhibited ERK phosphorylation and 
induced Akt phosphorylation but had no signifi-
cant effects on S6K or S6 phosphorylation. In 
summary, MEK inhibitors blocked the MEK/
ERK pathway and induced Akt phosphorylation, 
whereas they differentially affected mTOR/
S6K/S6 pathways. 

Inhibition of both PI3K/Akt and MEK/ERK 
pathways following combination of Afatinib 
and MEK inhibitors

We next determined whether a combination of 
Afatinib and MEK inhibitor could more effec-
tively block phosphorylation of Akt, ERK, S6K, 
and S6. Consistent with the results in Figure 1, 
treatment of A549 cells with 5 µM Afatinib 
blocked Akt, S6K, and S6 phosphorylation, but 
had no effect on ERK phosphorylation (Figure 
3A, lane 2 versus lane 1). In addition, Trametinib 
treatment completely blocked ERK phosphory-
lation and partially blocked S6K and S6 phos-
phorylation, which were accompanied by induc-
tion of Akt phosphorylation (Figure 3A, lane 3 
versus lane 2). However, a combination of 
Afatinib and Trametinib blocked phosphoryla-
tion of Akt, ERK, S6K, and S6 (Figure 3A). 
Similarly, a combination of Afatinib with 

PD0325901 also blocked this phosphorylation 
in A549 cells (Figure 3B). Moreover, a combina-
tion of Afatinib with Trametinib (Figure 3C) or 
PD0325901 (Figure 3D) significantly blocked 
phosphorylation of Akt, ERK, S6K, and S6 in 
H522 cells when compared to either single 
inhibitor treatment regardless of the earlier 
results that MEK inhibitors (both Trametinib 
and PD0325901) induced S6K and S6 
phosphorylation. 

Afatinib and Trametinib synergistically inhibits 
cell proliferation

We next determined whether Afatinib and 
Trametinib could cooperate to inhibit cell prolif-
eration. A549 cells were treated with vehicle 
control, or increasing doses of Afatinib or 
Trametinib, alone or combined, for 72 hours, 
after which we measured cell proliferation. 
Afatinib or Trametinib treatment alone led to 
inhibition of cell proliferation in a dose-depen-
dent manner, whereas the combination 
increased inhibition of cell proliferation com-
pared to either single treatment (Figure 4A). 
Furthermore, we found that the Afatinib and 
Trametinib combination increased inhibition of 
cell proliferation compared to the single treat-
ments in H522 cells (Figure 4B). Furthermore, 
we utilized the CalcuSyn 2.0 software to calcu-
late the combination index value (CI) according 
to the Chou-Talalay method [41]. A CI value 
greater than 1 is defined as antagonism, equal 

Figure 2. Inhibition of ERK phosphorylation and induction of Akt phosphorylation by MEK inhibitors, Trametinib or 
PD0325901 in NSCLC cells. (A and B) A549 cells were treated with different doses of Trametinib (A) or PD0325901 
(B) for 24 hours, lysed, and phosphorylation and total levels of ERK, Akt, S6k, and S6, as well as GAPDH expres-
sion, were detected by Western blot. (C and D) H522 cells were treated with different doses of Trametinib (C) or 
PD0325901 (D) for 24 hours and proteins as described for (A and B) were detected by Western blot. 
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to 1 as additive, and less than 1 as synergy. 
The CI values in combination treatments were 
less than 1 (Figure 4A and 4B), which demon-
strated that Afatinib and Trametinib synergisti-
cally inhibit cell proliferation.

Afatinib and Trametinib cooperate to induce 
apoptosis and cell death in NSCLC cells

To determine whether a combination of Afatinib 
and Trametinib could induce an increase in 
apoptosis compared to either single treatment, 
we first tested their effects on caspase-3 cleav-
age. Treatment with Afatinib (5 µM) alone led to 
no caspase-3 cleavage, while treatment with 2 
µM Trametinib caused caspase-3 cleavage; 
however, the combination of Afatinib and 
Trametinib induced significant caspase-3 cleav-
age after 48 hours in A549 cells (Figure 5A). 
Similar results were found in H522 cells (data 
not shown). Apoptosis measurement by Annexin 
V showed that Afatinib or Trametinib treatment 
alone increased apoptosis and cell death com-
pared to vehicle control treatment, whereas the 
combination significantly increased apoptosis 
and cell death in A549 cells (Figure 5B and 5C). 
Similarly, Afatinib and Trametinib cooperated to 
induce apoptosis and cell death in H522 cells 
(data not shown). Our data indicate that a com-
bination of Afatinib and MEK inhibitors syner-
gistically induced apoptosis and cell death in 
NSCLC cells. 

Afatinib and Trametinib inhibit cell cycle G1/S 
transition in NSCLC cells

We further determined the effects of Afatinib, 
Trametinib, or their combination on the cell 
cycle in H522 cells. Treatment with only Afatinib 

Figure 3. Inhibition of Akt/S6K/S6 and ERK pathways by a combination Afatinib with MEK inhibitors in NSCLC cells. 
(A and B) A549 (A) or H522 (B) cells were treated with DMSO control, Afatinib, Trametinib, or a combination for 24 
hours and phosphorylation and total levels of Akt, S6k, S6, and ERK, as well as GAPDH expression were detected 
by Western blot. (C and D) A549 (C) or H522 (D) cells were treated with DMSO control, Afatinib, PD0325901, or a 
combination for 24 hours and the indicated proteins were analyzed by Western blot. 

Figure 4. Afatinib and Trametinib synergistically 
suppress cell proliferation in NSCLC cells. (A and B) 
A549 (A) or H522 (B) cells were treated with differ-
ent doses of Afatinib, Trametinib, or a combination 
for 72 hours and cell proliferation was determined 
by MTS assay. The experiments were performed in 
triplicate, and the combination index values (CI val-
ues) were determined according to the Chou-Talalay 
method.
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(0.5 µM) or Trametinib (0.5 µM) led to signifi-
cant G1-cycle arrest, while the combination 
increased G1-cycle arrest in comparison to 
either single treatment (Figure 6A and 6B). 
Similar results were found in A549 cells (data 
not shown). Our data indicated that inhibition of 
cell proliferation by Afatinib, Trametinib, or a 
combination involved G1-cycle arrest. 

Discussion 

In this study, we showed that the ErbB family 
inhibitor Afatinib inhibited the phosphorylation 
of EGFR, HER2, HER3, and HER4, as well as 
Akt, yet still induced ERK phosphorylation. 
MEK/ERK inhibition by MEK inhibitors such as 
Trametinib or PD0325901 inhibited phosphory-
lation of ERK, but up-regulated Akt. A combina-
tion of Afatinib and MEK inhibitor blocked all 
ErbB family members, as well as Akt and ERK, 
which resulted in significant inhibition of cell 
proliferation, apoptosis induction, and cell 
cycle arrest. These data demonstrated that co-
targeting ErbB family and MEK/ERK pathways 
through a combination of Afatinib and Tra- 
metinib could more effectively treat NSCLC.

Previous studies have also demonstrated that 
inhibition of the PI3K/Akt pathway by PI3K 

inhibitors caused reactivation of the MER/ERK 
pathway through feedback mechanisms [42-
47]. In this study, our data indicate that Afatinib 
inhibits the Akt/mTOR pathway consistent with 
PI3K inhibitor treatment. However, it remains 
unclear whether Afatinib induces ERK activa-
tion through PI3K inhibition in NSCLC cells. 

Our data are consistent with results by multiple 
groups who demonstrated that inhibition of 
MEK/ERK by MEK inhibitors caused up-regula-
tion of the PI3K/Akt pathway, and a combina-
tion of MEK and PI3K inhibitors synergistically 
inhibited cell proliferation in multiple cancers, 
including NSCLC [44-48]. An important study 
by Hutchinson, et. al., reported that MEK inhibi-
tion by Trametinib up-regulated ErbB family and 
Akt activities, which, in turn, regulated MEK 
inhibitor sensitivity in a subset of driver-nega-
tive melanoma [48]. It is not clear whether 
Trametinib activation of Akt occurs through 
ErbB family activation in NSCLC. In addition, 
since there are currently no FDA-approved PI3K 
inhibitors for use in NSCLC treatment, one 
would expect that Afatinib, in combination with 
MEK inhibitor Trametinib, could more effective-
ly suppress NSCLC through ErbB family and 
PI3K inhibition.

Figure 5. Afatinib and Trametinib cooperate to induce apoptosis in NSCLC cells. (A) A549 cells were treated with 
vehicle control, Afatinib, Trametinib, or a combination for 48 hours, lysed, and expression of cleaved caspase-3 was 
detected by Western blot. (B) A549 cells were treated with vehicle control, Afatinib, Trametinib, or a combination 
for 48 hours. Cell apoptosis was measured by Annexin V. (C) Experiments in (B) were performed twice in triplicate, 
early and late stage apoptotic and dead cells were counted, and results were presented as mean ± SD. Student’s 
t-test using GraphPad Software were performed for statistical analysis. P values less than 0.05 were considered 
statistically significant. 
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Interestingly, we found that although MEK 
inhibitors blocked the MEK/ERK pathway and 
induced Akt phosphorylation, they differentially 
affected mTOR/S6K/S6 pathways in a cell 
type-specific manner (Figure 3). It has been 
shown that Akt activated mTOR through TSC2 
phosphorylation and inhibition [49-52]. Addi- 
tionally, activation of MEK/ERK pathway also 
led to up-regulation of the mTOR/S6K/S6 path-
way through ERK phosphorylation and TSC2 
inhibition [45, 53, 54]. The differences of the 
effects of MEK inhibitors on mTOR activation in 
A549 and H522 cells could be due to the fact 
that Akt or ERK signaling differentially controls 
mTOR activity in a cell type-specific manner. It 
would be interesting to determine more detailed 
mechanisms for this phenomenon. 

Afatinib is usually used to treat NSCLC patients 
with EGFR amplification of mutations, whereas 
MEK inhibitors are used to treat patients whose 
tumors have BRAF signaling mutations and/or 
abnormal activation [6, 11-14, 16-21]. It is not 
clear whether Afatinib will induce the MEK/ERK 
pathway or whether MEK inhibitors will induce 
elevated Akt activity in these NSCLC tumors. It 
is also important to determine whether the 
combination of Afatinib with Trametinib could 

more effectively suppress growth in tumors 
with EGFR or BRAF mutations. 

Afatinib is most often used to treat NSCLC 
patients with EGFR amplification of mutations, 
whereas MEK inhibitors primarily treat patients 
whose tumors have BRAF signaling mutations 
and/or abnormal activation of MEK/ERK [6, 
11-14, 16-21]. A549 cells have wild-type EGFR 
and KRAS mutations, whereas H522 cells have 
both wild-type EGFR and KRAS [55]. Therefore, 
Afatinib induction of the MEK/ERK signaling 
pathway could be KRAS-independent. It is not 
clear whether Afatinib will induce the MEK/ERK 
pathway or whether MEK inhibitors will induce 
elevated Akt activity in NSCLC tumors with dif-
ferent genetic backgrounds. An important 
study by Shi, et. al., showed that modulation of 
MEK/ERK-dependent Bim and Mcl-1 degrada-
tion by MEK inhibitor Selumetinib is crucial to 
regulate EGFR-mutant NSCLC cell sensitivity 
and resistance to the third generation EGFR 
inhibitor, AZD9291 [56]. It is also important to 
determine whether the combination of Afatinib 
and Trametinib could more effectively supp- 
ress growth in tumors with EGFR or BRAF 
mutations. 

Figure 6. Afatinib and Trametinib led to inhibition of cell cycle G1/S transition in NSCLC cells. (A) H522 cells were 
treated with vehicle control, Afatinib, Trametinib or a combination for 48 hours and cell cycle distribution was as-
sessed by flow cytometry. (B) Experiments in (A) were performed twice in triplicate, cell cycle distribution in G1, 
S, and G2/M were counted. Results were presented as mean ± SD. Student’s t-test using GraphPad Software 
were performed for statistical analysis. P values less than 0.05 were considered statistically significant (*P<0.05; 
**P<0.01, and ***P<0.005). 
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It should be noted that a very recent study by 
Yee, PS, et. al., showed that Afatinib and 
Trametinib synergistically inhibited Head and 
Neck Squamous Cell Carcinoma (HNSCC) 
growth in pre-clinical models of oral squa- 
mous cell carcinoma [57]. These findings are 
very similar to our results. In addition, we 
recently also found that a combination of 
Afatinib and PD0325901 dramatically inhibited 
cisplatin-resistant HNSCC proliferation [58]. 
Therefore, co-targeting of ErbB family and 
MER/ERK pathways could be effective to in- 
hibit cancer proliferation and survival in multi-
ple cancer types.
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