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Abstract: First-generation immunological checkpoint inhibitors, such as CTLA-4, PD-L1 and PD-1 exhibit significant 
advantages over conventional cytotoxic drugs, such as oxaliplatin and 5-FU, for the treatment of colorectal cancer. 
However, these inhibitors are not ideal due to their low objective response rate and the vulnerability of these treat-
ment methods when faced with emerging drug resistant cancers. This study summarizes the immunological char-
acteristics of colorectal cancer treatment, and analyzes the ways in which OX40 may improve the efficacy of these 
treatments. Activation of the OX40 signaling pathway can enhance the activity of CD4+/CD8+ T cells and inhibit the 
function of Treg. Simultaneously, OX40 can directly inhibit the expression of Foxp3, affect the inhibitory function of 
Treg, and inhibit the immunosuppressive factors in the tumor microenvironment so as to reverse immune escape 
and reverse drug resistance. Therefore, OX40 is an important target for treating colorectal cancer in “cold tumors” 
with less immunogenicity.
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Introduction

Colorectal cancer is tumor malignancy that 
occurs in the colon or rectum and is one of the 
top three causes of morbidity and top five 
causes of mortality worldwide [1]. Mortality in 
colorectal cancer is usually due to systemic 
metastasis of the cancer, as a result of treat-
ment failing to address weak immunogenicity-
related “cold tumor” immune escape and ex- 
tremely efficient drug-resistant mutations of 
the cancer. The current approach for drug im- 
provement is passive and inefficient. Newly de- 
veloped drugs tend to disorder immune envi-
ronments and contribute to the development  
of drug resistant tumors [2]. Optimal treatment 
strategies simultaneously address each of the- 
se factors by facilitating the efficient detection 
and killing of non-drug resistant tumor cells by 
immune cells. Research on tumor immunother-
apy has revealed that cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4) antibodies and 
programmed death 1/programmed death li- 
gand (PD-1/PD-L1) antibodies are effective tar-

gets for the treatment of colorectal cancer [3]. 
Additionally, solid tumors studies have reveal- 
ed that combined application of checkpoint 
inhibitors, CTLA-4 and PD-1, yield significantly 
decreased chances of drug-resistant cancer 
development [4]. The emergence of drug resis-
tant first-generation immunological checkpoint 
inhibitors urgently prompts the need for new 
immunomodulatory antibodies that break down 
tumor cell-mediated immune tolerance throu- 
gh multiple signaling pathways. Therefore, the 
immune costimulatory molecule OX40 (CD134) 
is a promising novel target for colorectal cancer 
immunotherapy. 

First, this study reviews fundamental immunol-
ogy concepts. The adaptive immune system is 
responsible for distinguishing tumor cells from 
normal cells. Tumor specific antigens present 
as peptides on MHC class I molecules for recog-
nition by cytotoxic CD8+ T cells (or MHC class II 
molecules for recognition by CD4+ T cells). In 
order to trigger the CD8+ T cell response, tumor 
cell antigens are processed by dedicated anti-
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gen presenting cells (APC), such as dendritic 
cells (DCs) and CD4+ helper T cell antigens, are 
presented to CD8+ T cells [5, 6]. The forma- 
tion of tumor immunosuppressive microenvi-
ronments is attributed to two processes. Tregs, 
myeloid-derived suppressor cells (MDSC) and 
tumor-associated macrophages (TAM) are criti-
cal for the creation of tumor immunosuppres-
sive microenvironments. TAMs play a critical 
role in this process by releasing immunosup-
pressive cytokines, such IL-10, IL-4, TGF-β, vas-
cular endothelial growth factor (VEGF) and ar- 
ginase. Another method of immune suppres-
sion by tumors is achieved through the upre- 
gulation of immunosuppressive receptors or 
ligands, such as CTLA-4, PD-1 and PD-L1. 
These factors interact to create immunosup-
pressive microenvironments. For example, vas-
cular endothelial growth factor receptor (VE- 
GFR) signaling can enhance the PD-L1/PD-L2 
pathway [7, 8].

Previously used cytotoxic drugs

Oxaliplatin: Oxaliplatin is a standard first-line 
treatment drug for colorectal cancer [9, 10]. 
Oxaliplatin treats colorectal cancer by activat-
ing the immune system APCs; this process is 
independent of T cell activation or MHC upregu-
lation. Previous studies have found that co-cul-
ture of colorectal cancer cells in an oxaliplatin 
supernatant promotes the maturation of DCs 
and increases the proliferation of T cells [11]. 
However, oxaliplatin-associated death of colo- 
rectal cancer cells results in the production of 
HMGB1, which induces immunogenicity-related 
cell death in various colon cancer cell lines. 
Treatment with cisplatin has not been found to 
produce these outcomes as this process of 
immunogenicity-related cell death relies on 
TLR-4 [12, 13]. Other studies have validated 
the role of oxaliplatin as an immunogenic cell 
death-inducing factor. Oxaliplatin mediates the 
expression of calcium net protein and HMGB1, 
which neutralize antibodies to eliminate the 
expression of the HMGB1/calcium net protein/
immunogenic cell death. This also confirms  
the importance of the HMGB1-TLR4 control 
shaft in oxaliplatin-mediated immune function 
[14]. Secondly, oxaliplatin reverses immuno-
suppression created by tumor growth. This co- 
uld be mediated through PD-1/PD-L1, follow- 
ing DC exposure to oxaliplatin, resulting in 
enhanced stimulation of T cells. During this  

process, there are no changes to the expres-
sion levels of MHC or costimulatory molecules, 
but the expression of PD-L2 and PD-L1 are 
decreased. This leads to elevated antigen-spe-
cific proliferation and enhances the recognition 
of tumor cells by T cells [15]. Joint treatment of 
colorectal cancer patients with IL-12 and oxa- 
liplatin stimulate T lymphocyte and NK cell  
proliferation, which balances the ratio between 
effector cells and regulation/suppression cells. 
This increase in the CD8+/Tregs ratio and 
reduction in MDSC abundance enhances the 
immune response against colorectal cancer 
and eliminates liver metastases [16].

5-fluorouracil (5-FU): 5-FU is a basic drug us- 
ed for the treatment of colorectal cancer [17]. 
5-FU specifically has an influence on the im- 
mune system aside from its direct cytotoxic 
effects. 5-FU efficiently and selectively con-
sumes the MDSC of mice in colorectal cancer 
and increases the expression of IFN-γ produced 
by tumor-specific T cells [18]. In contrast with 
oxaliplatin, 5-FU does not induce immunogenic 
cell death (because it does not upregulate ca- 
dherin) and its anti-tumor activity is TLR4 in- 
dependent. 5-FU effectively activates the im- 
mune system by enhancing the inhibition of 
anti-tumor immune functions [19].

Irinotecan: One of the most important drugs  
for the treatment of advanced colorectal can-
cer is irinotecan [20]. Melichar et al. found that 
irinotecan treatment increased the number of 
CD4+ and CD8+ cells in peripheral blood of 14 
patients with metastatic colorectal cancer [21]. 
Additionally, Kim et al. demonstrated that irino-
tecan (as part of a FOLFIRI regimen) inhibited 
the immunosuppressive environment of tumors 
to permit the maturation of DCs, by using a DC 
vaccine transfected with a virus vector overex-
pressing CEA. Compared with the vaccine al- 
one, the combination of DC vaccine and FO- 
LFIRI enhances tumor-specific immune respon- 
ses, as the number of CEA-specific IFN-γ secret-
ed lymphocytes increase. Although irinotecan 
does decrease MDSC and Tregs abundance, 
additional vaccine doses reverse this effect 
(Figure 1) [22].

Current individualized anti-VEGF/EGFR drugs

Anti-VEGF therapy: Over the past 10 years, vari-
ous methods of inhibiting vascular endothelial 
growth factor (VEGF) have been approved for 
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the treatment of colorectal cancer [23-29]. The 
main goal of anti-VEGF treatment is the res- 
tructuring of the tumor vascular system for 
enhanced drug delivery [30-32]. However, this 
therapeutic effect has not been efficiently 
achieved [33]. Nevertheless, pro-angiogenic 
factors are critical for the maintenance of the 
immunosuppressive tumor microenvironment. 
For example, pro-angiogenic factors stimulate 
Tregs in addition to producing immunosuppr- 
essive cytokines [34-36], thereby inhibiting the 
function of immune cells [37]. Counteracting 
these effects through treatment with VEGF 
facilitates normal immune system regulation 
and enhanced anti-tumor immune responses in 
the microenvironment [38, 39]. Treatment with 
bevacizumab enhances the anti-colorectal can-
cer effect of 5-fluorouracil on the VEGF-A/VE- 
GFR-2 pathway by upregulating thymidine phos-
phorylase [40]. Additionally, treatment with bee 
venom peptide interrupts the MAPK signal pa- 
thway mediated by VEGFR-2 and COX-2, which 
in turn effectively inhibits VEGF-A related tumor 
growth [41]. VEGF-A, VEGF-C, VEGFR-2 and VE- 
GFR-3 combined with the high expression CD4/
CD8 in the associated matrix are good immune 
prognostic markers of colorectal cancer [42]. In 
another study, it was found that levels of peri- 
pheral blood (PB) DC1 and DC2 levels are nega-

tively correlated with VEGF serum levels in pa- 
tients with colorectal cancer. It has been sug-
gested that the interval number and impaired 
function of PBDC may be related with neoplasm 
staging and VEGF level [43, 44]. Additionally, 
the dosing of anti-VEGF therapy is critical, sin- 
ce studies have found that anti-VEGF therapy 
combined with tumor vaccination activates the 
immune system and inhibits tumor growth 
when anti-VEGF treatment is administered at 
25% of the maximum dose. Compared with 
higher doses, lower doses lead to decreased 
MDSC infiltration. Lower doses of anti-VEGFR-2 
also increase the distribution of the functional 
vascular system compared with higher doses. 
In conclusion, appropriate doses of anti-VEGF 
therapy normalize the vascular system of co- 
lorectal tumors and decrease the inhibition of 
the immune microenvironment [37, 39, 45, 46].

Small molecule VEGF inhibitors: Sorafenib and 
regorafenib are two types of multi-kinase inhibi-
tors that can also be used to inhibit VEGF and 
have been used for the treatment of colorectal 
cancer. They have been shown to affect immu-
nogenicity, but their net effect is unknown [47-
51]. First, sorafenib inhibits the function of DC, 
decreases the induction of antigen-specific T 
cells [52, 53], and inhibits the function of NK 

Figure 1. Pathway analysis of Tumor cell and T cells: the pathways that involve MDSC cells, CD8+ T cells, Tumor 
cells, NK cells and chemotherapy drugs were constructed.
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cells [54, 55]. Regorafenib is a third-line treat-
ment for colorectal cancer but has a unique 
ability of reversing immune escape [56]. For 
example, regorafenib treatment enhances the 
responsiveness of adoptive chimeric antigen 
receptor modified T or NK cells (CAR-T or CAR-
NK) in solid tumors. Regorafenib and CAR-
NK-92 cells have been shown to exert syner- 
gistic effects on immune responses in human 
colorectal cancer xenografts in mouse models. 
Treatment with regorafenib enhances the abili-
ty of CAR-NK-92 cells to specifically recognize 
EpCAM-positive colorectal cancer cells and 
release cytokine killers, such as IFN-γ, perforin 
and granular enzyme B [57].

Anti-EGFR therapy: Panitumumab and cetux-
imab have been proven to enhance immune 
activity in colorectal cancer patients [58]. A 
large number of preclinical studies indicate 
that cetuximab treatment can induce antibody-
dependent cell-mediated cytotoxicity (ADCC) 
[59, 60]. Cetuximab is usually combined with 
chemotherapy but individualized gene expres-
sion is critical for its effect on immunity. 
Correale et al. found that EGFR expression is 
upregulated after chemotherapy, which subse-
quently leads to increased susceptibility of 
colorectal cancer cells to ADCC, independent  
of the k-ras pathway [61]. Cetuximab affects 
the proliferation and phagocytosis of colorec- 
tal cancer cells through DC. This suggests that 
CTL-dependent immunity is involved in the anti-
tumor effects of cetuximab [62]. These studies 
also suggest that the order of administration is 
important for triggering an effective immune 
response. A critical finding presented in this 
study is that anti-EGFR therapy remains effec-
tive at suppressing immune escape even in 
cases of drastic mutations to the k-ras path-
way. Compared with a standard FOLFOX regi-
men, the immune-activated chemotherapy reg-
imen (with irinotecan and 5-FU administered  
on the first day and cetuximab administered on 
the third day) increases levels of CEA and thy-
midine synthase-specific CTL precursors in the 
blood of patients, as well as the number of kill-
er T cells [63].

Potential immune costimulatory molecular 
drugs that reverse both immune escape and 
drug resistance

OX40 belongs to the tumor necrosis factor 
receptor superfamily and is expressed on the 

surface of antigen-presenting cells, natural kill-
er cells and mast cells [64]. The sole ligand of 
OX40, OX40L (CD252), activates T cells by stim-
ulating OX40 and initiating activation signals, 
such as NF-κB and nuclear factr of activated T 
cells (NFAT) [65]. These signals increase the 
expression of cyclin A, cyclin-dependent kina- 
se, cytokines and their receptors [66]. OX40 is 
expressed on the surface of tumor infiltrating 
lymphocytes (TILs) of various tumor tissues 
[67]. In colorectal cancer, the high expression 
levels of OX40 on TILs of mesenteric lymph 
nodes and other sites have been found to be 
positively correlated with overall survival, par-
ticularly when the expression of OX40 is elevat-
ed on the surface of CD4+ T cells and on the 
surface of tumor-infiltrating Tregs [68, 69]. Ac- 
tivation of the OX40 signaling pathway enhanc-
es the activity of CD4+/CD8+ T cells and inhib-
its the function of Tregs. However, T cell activa-
tion signals can be neutralized by inhibitory 
receptors, such as PD-1 or CTLA-4 [35, 70]. 
Previous animal studies have shown that OX40 
is expressed on the surface of T cells between 
24 and 96 hours after antigen recognition and 
that the presence of the OX40 agonist antibody 
increases the survival of different subtypes of 
effector T cells [71-73]. As illustrated in Figure 
2, OX40 affects the inhibitory function of Tregs 
because OX40 inhibits the expression of Foxp3 
directly, which inhibits the antagonistic effects 
of TGF-β and is responsible for transforming T 
cells into Foxp3+ Tregs [74-76]. Additionally, Tr1 
cells (inhibitory CD4+ T cells) induced in vitro 
can be blocked by the activation of OX40 [77]. 
However, the degree of OX40 activation de- 
pends on the immune microenvironment of T 
cells, since OX40 can only promote the prolif-
eration of Treg in the absence of IFN-γ and IL-4 
[78, 79].

Reversal of immune escape: The OX40 signal-
ing pathway can be activated by OX40L-Fc 
fusion proteins, specific OX40 antibody ago-
nists, and transfected tumors and dendritic 
cells (DCs). OX40 antibody agonists directly im- 
prove the effector function of T cells and neu-
tralize invasive Tregs [80, 81]. This is accom-
plished via antibody-dependent cell-mediated 
cytotoxicity (ADCC) or antibody-dependent cell-
mediated phagocytosis (ADCP). Additionally, th- 
is process involves surface activated Fc γ re- 
ceptors (human being: FcγR I and FcγR II a, 
mouse: FcγR I, FcγR III and FcγR IV) of NK cells 
that recognize antibodies bound to antigens on 
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the surface of cell membranes and kill these 
specific cells. The antibody impacts the str- 
ength of the ADCC or ADCP response based on 
the following factors: (I) Antibody subtypes; for 
example, the ADCC effect of an IgG1 antibody  
is stronger than that of an IgG4 antibody [82-
84]. (II) Glycosylation modification; for example, 
fucose can enhance the ADCC effect of natural 
killer cells. (III) Types of Fc receptors (and whe- 
ther they are activated or inhibited) [85]. (IV) 
The density of macrophages in tumor lesions 
[86]. Additionally, the activation or depletion of 
OX40 antibodies depend on the expression of 
OX40 on the surface of different TIL subtypes. 
ADCC occurs only when NK cells are present 
and the activated Fc receptor is expressed 
[87]. Intravenous administration of OX40 anti-
body is more likely to activate peripheral lym-
phocytes, while intra-tumor administration can 
enhance the activation of tumor-specific im- 
mune responses and reduce systemic toxicity. 
ADCC can be further enhanced in combina- 
tion with 4-1bb antibodies [88]. Decreasing the 
accumulation of bone marrow cells in tumors 
can weaken the tumor inhibition effect of the 
OX40 antibody [89]. However, OX40 antibody-
mediated Tregs depletion does not account for 

all anti-tumor effects, since it has been ob- 
served that OX40 antibodies directly activate 
CD8+ T cells and CD4+ effector T cells to elicit 
anti-tumor effects [90, 91]. In conclusion, Tregs 
depletion is a necessary but insufficient condi-
tion for OX40 antibody functioning, while the 
activation of effector T cells also play a critical 
role. This provides us with more useful details 
for future drug development efforts related to 
OX40 for the treatment of colorectal cancer.

Reversing drug-resistance: OX40 antibodies 
and OX40 Fc fusion shows strong tumor sup-
pressive effects on low tumor load in mice. 
However, OX40 antibody treatment has a weak 
therapeutic effects on larger or metastatic tu- 
mors, which can be improved when OX40 is 
used in a combined drug regimen [92]. The cur-
rent strategy is to enhance antigen release for 
improved immune suppression and providing 
assistance to adoptive T cells, including using 
cyclophosphamide to kill tumor cells, release 
antigens and mediate Tregs inhibition [93]. Sin- 
ce the OX40 signaling pathway significantly pro-
longs the survival of antigen-activated CD4+ 
and CD8+ T cells, the combination of OX40 ago-
nists with certain combination therapies incre- 

Figure 2. Pathway analysis of APC cells and T cells: the pathways that involve OX40/OX40L, PD-1/PD-L1, mTOR/Akt, 
NK-κB/NFAT and Cyclin A/CDK were analyzed.
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ases antigen load [94, 95]. For example, OX40L-
Fc used in combination with chemotherapy and 
vaccines for the treatment of solid tumors [96]. 
Additionally, the survival of CD4+ and CD8+ 
effector T cells can be enhanced by inhibiting 
the function of Tregs (via depletion or attenua-
tion of the inhibitory effect of Tregs). The most 
operable strategy is that OX40 agonists com-
bined with immunosuppressants exert a sy- 
nergistic effect for the treatment of metastatic 
colorectal cancer. PD-1 inhibitors combined 
with OX40 agonists significantly extend the sur-
vival time of 50% of experimental animals tre- 
ated for colorectal cancer [97, 98]. Similarly, 
OX40 antibody combined with arginase inhibi-
tors significantly enhance the function of CD4+ 
T cells and CD8+ T cells, thereby inducing tumor 
shrinkage [99].

Summary and prospects

During recent years, many studies have ex- 
plored potential treatment methods that modu-
late varying aspects of the immune response, 
in order to target cancers, such as colorectal 
cancer [100, 101]. The advantages of immuno-
therapy are clear: a lasting response, a lack of 
drug-resistance, generation of immune memo-
ry and a decrease in non-specific toxicity [102, 
103]. However, immunotherapy is not suitable 
for every patient and may require a combina-
tion of multiple treatments to elicit an appropri-
ate immune response and to address “immune-
susceptible” tumors [104, 105]. For example, 
metronomic chemotherapy (high frequency, low 
dose chemotherapy) has gained increasing 
attention during recent years, since its admi- 
nistration has been shown to exert positive 
effects on the immune response [106-109]. 
Metronomic chemotherapy can improve CTL 
activity and reduce the quantity of immunosup-
pressive cells (Tregs and MDSCs) in the tumor 
microenvironment by adequately stimulating 
cytotoxic immune cells without exhaustion. 
Checkpoint suppression can further enhance 
the immune response against tumors by keep-
ing T cells in an activated state. Combining 
checkpoint suppression with metronomic che-
motherapy drug delivery can produce synergis-
tic effects that enhance immune responses 
against tumors and eliminate metabolic com-
petition. This allows for the elimination of treat-
ment-resistant cancer cells, an effect that can-
not be achieved with either treatment alone 

[109, 110]. The OX40 antibody has broad pros-
pects in combination with other therapies, such 
as surgery, radiotherapy, vaccines and immu-
nomodulators. At present, more studies are 
needed to find the most effective combination 
schedule and optimal dose to balance the 
direct anti-cancer effect of conventional thera-
py in synergy with immunotherapy to achieve 
maximum effectiveness using OX40 for the 
treatment of colorectal cancer. 
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