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Abstract: Tumor biopsy is the standard method for cancer diagnosis and provides an important sample for patho-
logical assessment. With the development of precision medicine, liquid biopsies are now an important tool to detect 
molecular changes and tumor heterogeneity. In recent years, research related to circulating tumor DNA (ctDNA) 
has intensified due to its non-invasive, convenient, comprehensive, and safety characteristics. Herein, we provide a 
review describing the clinical applications and prospects of ctDNA in colorectal cancer (CRC) diagnosis, monitoring 
and prognosis.
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Introduction

Colorectal cancer (CRC) is the second most 
common cause of cancer deaths worldwide: 
The mortality rate is the fourth highest among 
men and third highest among women [1]. The 
early diagnosis and treatment of CRC is nece- 
ssary for clinical progress that improves pati- 
ent outcomes. Importantly, early CRC detection 
can significantly improve the cure rate. Tradi- 
tional clinical diagnostic methods include se- 
rum tumor markers, colonoscopy, imaging, and 
tissue biopsy. Carcinoembryonic antigen (CEA) 
and carbohydrate antigen 19-9 (CA19-9) are 
used as serum tumor markers, but these two 
markers alone do not fully satisfy clinical needs 
due to their lack of sensitivity and specificity 
[2]. Tumor biopsies also have clinical short- 
comings. Due to substantial trauma and poor 
patient compliance, it is difficult to obtain re- 
peat biopsies to monitor disease progression. 
Therefore, circulating tumor DNA (ctDNA) has 
emerged as a promising diagnostic tool for 
CRC. Furthermore, the information obtained fr- 
om ctDNA and tissue biopsies are complemen-
tary. Incorporating information from ctDNA can 
overcome some of the challenges associated 
with tumor heterogeneity and limited tissue 
availability. This article summarizes the clinical 

applications and prospects of ctDNA for early 
detection, postoperative monitoring, treatment 
response and therapeutic resistance in CRC 
(Figure 1; Table 1). 

Overview of ctDNA

Cell-free DNA (cfDNA) is fragmented DNA that  
is found in the non-cellular blood components 
of healthy individuals. Among tumor patients, 
ctDNA is 150~200 base pair fragments that 
are released by tumor cells into the bloodst- 
ream and represents a small fraction of the 
total cfDNA. Importantly, ctDNA retains epigen-
etic characteristics and carries tumor-specific 
mutations that can be detected in peripheral 
blood [3]. The normal half-life of ctDNA is less 
than an hour, which suggests in can reflect 
dynamic tumor characteristics. Studies now 
suggest that ctDNA has multiple origins and is 
not derived from a single source [4]. The three 
primary sources of ctDNA are: 1) apoptotic or 
necrotic tumor cells; 2) active tumor cells; and 
3) circulating tumor cells (Figure 2) [5-8]. Be- 
cause the genetic information carried by ctDNA 
is exactly the same as tumor cells and it is pres-
ent in the peripheral blood, ctDNA is an ideal 
diagnostic tool for CRC, and its clinical applica-
tions are actively being investigated.
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Extraction and detection of ctDNA

Isolating and detecting ctDNA is a significant 
challenge. First, ctDNA accounts for only a 
small portion of the total cfDNA in peripheral 
blood (sometimes <0.01%), which makes it  
difficult to obtain [9]. Most cfDNA is present in 
nucleosomal fragments. The ctDNA yield is 
usually less than 10 ng per mL of blood, with an 
average yield of 6.6 ng per mL. Yield can vary 
due to exercise, inflammation, surgery, or tis-
sue damage [10, 11]. In clinical practice, col-
lecting additional blood samples from patients 
could improve detection sensitivity, however, 
this is not a viable solution. Recently, enhanced 
detection and analysis of ctDNA with frag- 
ment size analysis drew worldwide attention. 
Mouliere et al. used shallow whole-genome 
sequencing to analyze ctDNA fragment sizes in 
344 plasma samples from 200 cancer patients. 
The ctDNA enrichment of tumor-related frag-
ments between 90 and 150 base pairs in 
length was detected. Using this method, 95% of 
patients had a ctDNA concentration that was 
more than 2 times greater than previously 
detected concentrations. Moreover, 10% had a 
concentration that was more than 4 times 
greater than previously obtained ctDNA con-
centrations [12]. This study also contributed to 
improvements in the ctDNA diagnostic tests 
with the minimal cost. Current research demon-
strates that plasma is the best sample type  
for ctDNA analysis. Even though cfDNA concen-
trations are approximately 20 times higher in 

serum when compared to plasma, the large 
quantity of normal cfDNA in serum from leu- 
kocyte lysis hinders ctDNA detection [13, 14]. 
Therefore, blood should be collected in antico-
agulant tubes containing cell stabilizers or EDTA 
tubes, preferably within 6 hours after sampling, 
to separate plasma [15].

Sanger sequencing was initially used to detect 
ctDNA. However, Sanger sequencing has sev-
eral limitations including complicated process-
ing and high costs [16]. Diehl et al. developed a 
technique called BEAMing to detect ctDNA in 
blood [10]. This detection technology combines 
digital PCR and flow cytometry. Each type of 
DNA molecule is specifically linked to magnetic 
beads, which allows for differences between 
DNA molecules to be evaluated by flow cy- 
tometry. Because this method is based on be- 
ads, emulsion, amplification, and magnetism, 
which are the four main components, it is called 
BEAMing. In CRC, the advent of next-generation 
sequencing (NGS) technology has made ctDNA 
detection in plasma a promising practice [17]. 
The sensitivity of ctDNA detection with NGS 
can be improved further when combined with 
whole genome analysis [18]. Presently, several 
commercially available NGS systems are suit-
able for clinical use including the Illumina Mi- 
seqDx, Thermo Fisher Ion Personal Genome 
Machine (PGMTM) System, and QIAGEN Gene- 
Reader NGS System. NGS clinical use is be- 
coming more widespread because it allows for 
large-scale parallel sequencing that can be per-
formed at the whole-genome level with high 

Figure 1. Clinical application of ctDNA in colorectal cancer (CRC). The primary application of ctDNA in resectable 
and unresectable CRC.
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Table 1. Summary of ctDNA clinical applications
Clinical application Analyses Summary
Diagnosis of early stage patients ctDNA methylation ctDNA methylation has better sensitivity and specificity in early stage CRC 

patients [20-22]
Circulating protein levels and mutations in cfDNA ctDNA can be used to identify the site of origin for a few tumor types [29]
Fragment length distribution of DNA types Healthy people and cancer patients can be distinguished according to the 

fragment length distribution pattern of cfDNA [28]
Monitoring postoperative recurrence ddPCR, ctDNA quantification ctDNA can be used to predict and identify recurrence earlier [10, 33-35]

NGS, ctDNA quantification ctDNA can be used to stratify the risks of patients who have completed  
postoperative adjuvant chemotherapy and identify patients that are at high-
risk for recurrence [36-38]

Monitoring treatment response Amplicon-based deep sequencing, ctDNA quantification ctDNA can be used to track treatment responses and inform prognoses 
weeks to months earlier than imaging [45, 47-50]

ddPCR, ctDNA quantification ctDNA levels can reflect the tumor burden in advanced patients and guide 
subsequent treatment [51-54]

Therapeutic resistance in metastatic patients Real Time PCR, ctDNA mutations ctDNA can be used to monitor acquired resistance to targeted therapy in 
mCRC patients and reveal resistant mechanisms in different tumor lesions 
within the same patient [44, 66-68, 72, 73]

ddPCR and NGS, ctDNA mutations ctDNA can be used to identify patients that are suitable for re-challenge 
strategies [69, 70]

ctDNA: circulating tumor DNA; cfDNA: cell-free DNA; CRC: colorectal cancer; mCRC: metastatic colorectal cancer; PCR: polymerase chain reaction; ddPCR: droplet digital polymerase chain reaction; NGS: next 
generation sequencing.
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accuracy and sensitivity. In the 2019 NCCN 
guidelines, NGS technology was permitted for 
the detection of RAS (KRAS and NRAS) and 
BRAF mutations in mCRC. 

Clinical applications of ctDNA

Diagnosis in early-stage CRC patients

The early diagnosis of CRC is critical to impro- 
ving the disease cure rate. Currently, the pri-
mary methods for early diagnosis are stool 
occult blood detection, digital rectal exami- 
nation (DGE), and serum tumor marker (CEA, 
CA19-9) analysis. Detection of the serum tumor 
marker CEA cannot fully satisfy clinical needs 
due to its low sensitivity and specificity. Thus, 
ctDNA, especially when combined with CEA for 
early detection, may be an advantageous tool 
to diagnose CRC [19]. Some studies suggest 
that ctDNA methylation has better sensitivity 
than traditional serum tumor markers in early 
stage CRC patients and is a potential bio- 
marker for CRC diagnosis [20, 21]. Moreover, a 
recent study indicated that a single ctDNA 
methylation marker, cg10673833, could yield 
high sensitivity (89.7%) and specificity (86.8%) 
for detection of CRC in 1493 participants [22]. 
The Epi proColon test, which is approved by the 
FDA for clinical application, is widely used to 
screen the methylation status of the SEPT9 
promoter in cfDNA from CRC patients [23].

In addition to cancer, an increase in plasma 
ctDNA levels is observed in many other medical 
conditions including myocardial infarction [24], 
severe infection, inflammatory diseases [25], 
and pregnancy [26]. In the general population, 

benign lesions may have the same mutations 
as cancer cells and may release cfDNA into  
the circulation [27]. Therefore, an increase in 
ctDNA levels may be non-specific. To overcome 
this problem, a recent study found that DNA 
fragment length distributions exhibit distinct 
patterns. The length distribution of cfDNA frag-
ments from healthy individuals was regular. In 
contrast, the length distribution of ctDNA frag-
ments from cancer patients was irregular [28]. 
These data indicated that healthy individuals 
and cancer patients can be distinguished 
according to the distribution patterns of free 
DNA fragment lengths. Other studies have de- 
monstrated conserved gene mutations among 
tumors, including those in KRAS, BRAF, and 
TP53. Unfortunately, it is difficult to locate mi- 
nimal tumors in specific organs when a test 
shows a positive result. In this scenario, a test 
called CancerSEEK can be performed to evalu-
ate circulating protein levels and cfDNA muta-
tions. The sensitivity of CancerSEEK in five can-
cer types (ovary, liver, stomach, pancreas, and 
esophagus) was 69-98%, and the specificity 
was greater than 99% in all tumor types. These 
results provide evidence that CancerSEEK im- 
proves early stage cancer detection. Most im- 
portantly, CancerSEEK identifies the site of ori-
gin for select tumor types [29]. 

It has been shown that ctDNA primarily origi-
nates from necrotic and apoptotic tumor cells, 
and it is necessary to quantify the effective 
level of cfDNA in healthy individuals to create 
better diagnostic thresholds for early diagnosis 
[30]. Therefore, the ctDNA field needs support 
from studies with large sample sizes, and the 
detection methods must be standardized be- 

Figure 2. Overview of liquid biopsy. Liquid biopsy include circulating tumor DNA (ctDNA), which is released by tumor 
cells; circulating tumor cells (CTCs), which is a variety of tumor cells existing in peripheral blood; exosomes, which 
are extracellular vesicles released by tumor cells. The centrifuged blood sample is divided into three layers, which 
contains the top layer of plasma, the middle layer leukocytes and platelets, and the bottom layer of erythrocytes. 
Moreover, the plasma is the best sample type for ctDNA analysis.
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fore they can be used for clinical cancer di- 
agnoses.

Monitoring postoperative early recurrence in 
CRC

During the clinical treatment of CRC, most pa- 
tients with stage I-III non-metastatic CRC re- 
ceive radical surgery. Among these patients, 
30-50% still face disease recurrence [31, 32]. 
Therefore, it is necessary to identify an effec-
tive biomarker to monitor disease relapse. Cu- 
rrent monitoring methods, including serum tu- 
mor marker, imaging, and colonoscopy, cannot 
identify early relapse. Preliminary research indi-
cates that ctDNA levels are notably decreased 
in patients without disease recurrence and 
elevated in patients with recurrence [10, 33, 
34]. Compared with the traditional tools for 
monitoring disease relapse, ctDNA can identify 
a recurrence 2-15 months (average 10 months) 
earlier [35]. This is a major breakthrough for 
clinical practice.

At the 2019 American Society of Clinical On- 
cologists (ASCO) conference, Tie et al. reported 
the results of a prospective study that included 
485 CRC patients with stage II or III disease. 
The study suggested that the prognostic signifi-
cance of ctDNA for postoperative adjuvant che-
motherapy can be further stratified by ctDNA 
minor-allele frequency (MAF) level. This study 
reported that the 3-year relapse free survival 
(RFS) for patients with MAF>0.046% was 9% 
and was 33% for patients with MAF≤0.046%. 
For patients receiving adjuvant chemotherapy, 
the 3-year RFS for MAF>0.046% was 25%, 
compared to 70% for MAF≤0.046% [36]. For 
patients with stage III colon cancer, National 
Comprehensive Cancer Network (NCCN) guide-
lines recommend postoperative adjuvant che-
motherapy to clear minimal residual disease. 
However, it is still unclear who has a high risk  
of recurrence after adjuvant chemotherapy. Re- 
cent studies suggest that ctDNA can stratify 
the risks of patients who have completed adju-
vant chemotherapy to identify high-recurrence 
risk groups [37]. At the 2019 European Society 
for Medical Oncology (ESMO) conference, the 
IDEA-France Phase III clinical trial stimulated 
important conversation. ctDNA can guide indi-
vidualized adjuvant chemotherapy therapy in 
high risk patients. For patients with low risk 
CRC (T3N1), positive ctDNA levels after surgical 

resection, especially after 3 months of che- 
motherapy, indicate that treatment should be 
extended to 6 months. As Dasari et al. reported 
in a recent editorial, ctDNA provides new th- 
erapeutic opportunities for patients at high-risk 
for recurrence [38]. Of course, the current pro- 
blem is whether patients with a high recurr- 
ence risk confirmed by ctDNA should receive 
intensive treatment. All of these issues need a 
large number of prospective studies to obtain 
answers. 

Wang et al. also proposed that monitoring ct- 
DNA levels every 3-6 months after surgery can 
be used to supplement CEA, CT, or other con-
ventional monitoring tools. It also can be used 
to stratify CRC patients after surgical resection 
[39]. The study also emphasized that even 
though the average time before a ctDNA posi-
tive test was 4 months prior to imaging detec-
tion, the ctDNA result still appeared 9 months 
after surgical resection. Overall, ctDNA detec-
tion did not affect the decision to pursue adju-
vant chemotherapy in clinical practice. There 
are some lingering questions about how to 
make clinical decisions when ctDNA indicates a 
possible recurrence, but imaging does not pro-
vide an obvious confirmation during a follow-up, 
and how to choose the appropriate treatment 
strategies. The answers to these questions 
lack clinical results, and more prospective stud-
ies are needed to guide the treatment of 
patients with postoperative recurrence.

The detection of ctDNA can identify minimal 
residual disease and characterize the risk strat-
ification of adjuvant chemotherapy. It can effec-
tively manage postoperative treatment in CRC 
patients. In the future, it is anticipated that 
data from prospective studies will allow ctDNA 
to be used for clinical monitoring of CRC recur-
rences [39, 40]. Therefore, the application of 
ctDNA to postoperative monitoring fully reflects 
the concept of individualized precision medi-
cine and is superior to traditional monitoring 
methods because it can identify recurrences 
earlier.

Monitoring treatment response in CRC

Traditionally, to monitor advanced CRC, CEA, 
imaging (CT, MRI), and colonoscopy are used 
for evaluation. However, CEA has significant li- 
mitations in clinical practice due to its low sen-
sitivity and specificity [41-43]. Consequently, 
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better biomarkers are needed to monitor treat-
ment response and ctDNA is a suitable alterna-
tive [44]. As already discussed, the tumor bur-
den can be monitored in real-time due to the 
short half-life of ctDNA. Compared to imaging 
approaches, serial ctDNA analysis can be used 
to track treatment responses weeks to months 
earlier, which can provide sufficient time to 
adjust treatment strategies and prevent dis-
ease progression [45, 46]. The plasma ctDNA 
level is related to poor prognosis in the patients 
after chemotherapy [47-49]. More specifically, 
Tie and colleagues reported that patients with 
ctDNA levels that decreased ≥10-fold after the 
chemotherapy had longer progression-free sur-
vival (PFS) than patients with ctDNA levels that 
decreased <10-fold (median PFS: 14.7 months 
VS 8.1 months; HR=1.87; 95% CI 0.62-5.61) 
[50].

In addition to identifying individuals that do not 
respond to treatment, ctDNA can also be used 
to assess the tumor burden in advanced pa- 
tients and to guide subsequent treatment deci-
sions. Vidal et al. noted that dynamic changes 
in RAS ctDNA MAF can reflect disease progres-
sion and that these changes are measurable 
before diagnostic imaging can occur [51]. A 
recent retrospective study confirmed the utility 
of ctDNA as a prognostic biomarker for meta-
static colorectal cancer (mCRC) before first-line 
oxaliplatin-based chemotherapy [52]. A pro-
spective phase II clinical trial (NCT01442935) 
also indicated the clinical utility of ctDNA. For 
patients with liver metastases from potentially 
resectable CRC, receiving first-line standard 
chemotherapy combined with targeted therapy, 
which can detect ctDNA level before R0 or R1 
surgery have shorter overall survival (OS) 
(p<0.001). This result also proved that ctDNA 
can be used to identify patients that are suit-
able for resection of liver metastases [53]. 
Apatinib monotherapy efficacy in patients with 
refractory mCRC was also evaluated with ctDNA 
[54]. The ctDNA levels in the peripheral blood of 
patients with mCRC was higher than the ctDNA 
levels in patients with non-metastatic CRC. It is 
clinically significant to monitor the treatment 
response in patients with advanced CRC [55]. 
As an important tool, ctDNA can inform better 
treatment strategies for advanced disease pa- 
tients and has a greater potential to supple-
ment Response Evaluation Criteria in Solid Tu- 
mors (RECIST) evaluation. 

Neoadjuvant chemoradiotherapy (nCRT) is wi- 
dely used to treat locally advanced rectal can-
cer (LARC). Approximately 50-60% of rectal 
cancer patients suffer from tumor regression 
after neoadjuvant chemoradiotherapy, with a 
pCR (pathologic complete response) as high as 
20% [56]. To avoid postoperative complications 
and improve the quality of life in advanced 
LARC patients, some researchers have propo- 
sed a “watch and wait” strategy. Previous stud-
ies confirm that the response of rectal cancer 
patients to neoadjuvant therapy is related to 
the disease prognosis [57]. Yang et al. suggest-
ed that ctDNA can be used to classify patients 
with LARC into high-risk or low-risk subgroups 
and therefore, choose patients that are su- 
itable for a “watch and wait” strategy [58]. 
Although ctDNA can provide valuable informa-
tion to inform treatment decisions, prospective 
research is still needed to evaluate follow-up 
treatment strategies. 

In clinical practice, ctDNA has great potential 
for improved treatment monitoring. It avoids 
radiation exposure from conventional CT scans 
and has higher sensitivity than CEA. Therefore, 
ctDNA can be used for better identification of 
disease progression and to make timely adjust-
ments to treatment strategies. 

Therapeutic resistance in metastatic patients

The mCRC patient subpopulation with wild-type 
KRAS/NRAS/BRAF is usually sensitive to initial 
anti-EGFR therapy. However, tumors commonly 
develop acquired resistance within the first  
few months of treatment, which is the main 
cause of treatment failure for individuals receiv-
ing targeted tumor therapy. The mechanism of 
acquired resistance during anti-EGFR therapy 
is attributed to bypass signal pathway activa-
tion and secondary alterations in the EGFR 
receptor [59-61]. Approximately 40% of CRC 
patients have mutations in codons 12 and 13 
of the KRAS exon 2 [62]. Some studies have 
shown that mutations in the KRAS exon 2 pre-
dict anti-EGFR (cetuximab and panitumumab) 
treatment failure [63-65]. The mechanism of 
acquired resistance is complicated in anti-
EGFR therapy and is difficult to track in clinical 
practice. However, because ctDNA can be used 
for non-invasive, real-time monitoring of abnor-
malities in the EGFR signaling pathway, it could 
be a strategy to identify acquired resistance to 
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anti-EGFR therapy in mCRC patients and guide 
subsequent treatment. 

Retrospective analysis indicates that KRAS 
mutations can develop in patients who were ini-
tially KRAS wild-type while receiving anti-EGFR 
therapy. Accordingly, other studies have found 
that KRAS mutations appear within 10 months 
of cetuximab therapies. These results indicate 
that KRAS mutations are a primary mechanism 
of acquired resistance with anti-EGFR treat-
ment and usually develop within 5-6 months  
of treatment [44, 66]. Because different resis-
tant mechanisms will occur in different tumor 
lesions within the same patient [67], ctDNA can 
be a powerful tool. Parallel analysis of serial 
ctDNA monitoring can non-invasively track th- 
ese mutations to reduce the adverse effects 
caused by tissue biopsies and to guide follow-
up treatments [68]. Currently, anti-EGFR re-
challenge strategies are effective in patients 
with acquired resistance [69]. For example, 
cetuximab combined with irinotecan is effec-
tive as a third-line therapy for patients that 
received cetuximab combined with irinotecan 
as a first-line therapy prior to developing resis-
tance. Patients that are suitable for a re-chal-
lenge strategy can be selected by analyzing 
ctDNA [70]. 

HER2 belongs to the same family of signaling 
kinase receptors as EGFR. Notably, successful 
targeting of HER2 in breast cancer patients has 
been achieved in both the advanced and adju-
vant settings. HER2 overexpression in colorec-
tal cancer is rare and only occurs in approxi-
mately 3% of patents [71]. Intriguingly, the HE- 
R2 overexpression rate in patients with wild-
type KRAS/NRAS/BRAF is approximately 5-14% 
[71]. HER2 overexpression also indicates fail-
ure of anti-EGFR therapy. A study showed that 
HER2 overexpression can be non-invasively de- 
tected with ctDNA and used to predict the effi-
cacy of anti-HER2 targeted therapy [72].

In current immunotherapy, tumors with micro-
satellite instability-high (MSI-H) status are sen-
sitive to immune checkpoint inhibitors (ICBs), 
but nearly half of the patients in this subpopu-
lation have innate resistance. Activation of the 
WNT/β-catenin pathway can lead to immuno-
logical rejection and resistance to ICBs. Recent 
studies indicate that patients with MSI-H who 
are also resistant to ICB have an RNF43 muta-
tion and additional mutations in APC or CT- 

NNB1. These studies also indicated that co-
activation the of WNT/β-catenin pathway pro-
motes resistance mechanisms [73]. The analy-
sis of ctDNA to identify resistance mechanisms 
has highlighted the clinical potential of liquid 
biopsies. Serial ctDNA analysis can identify 
secondary resistance mechanisms that are not 
captured by single tissue biopsy while simulta-
neously predicting the time and reason for 
treatment failure. These analyses can play a 
key role in guiding clinical therapeutic stra- 
tegies.

Prospective outlook of ctDNA applications in 
CRC

As a potential tool for clinical practice, ctDNA 
has a promising future. However, there are still 
several areas of the liquid biopsy technology 
that require development including the clinical 
examination method, a standardized detection 
process, and quantitative standards. Variables 
that affect the sample quality, including sample 
collection, transportation, and storage, should 
be controlled. In addition, it is still difficult to 
separate specific ctDNA fragments from cfDNA. 
Selecting the best detection panel is also an 
ongoing challenge. Although ctDNA fragments 
are currently enriched based on ctDNA/cfDNA 
fragment length, more research in this area is 
needed to perform this is the best practice. 
Currently, the utility of ctDNA is not limited to 
quantitative assessment, but also provides in- 
formation related to mutations, copy number 
variation, and epigenetics. A large quantity of 
prospective studies with ctDNA are still needed 
to prove its clinical utility. There are some lin-
gering questions about how to make clinical 
decisions when ctDNA indicates a possible re- 
currence, but imaging does not provide an obvi-
ous confirmation during a follow-up, and the 
patients with ctDNA-positive whether need in- 
tensive therapy. Needless to say, key benefits 
of ctDNA are that it provides better metrics for 
precision medicine and that it breaks away 
from the limitations of tumor tissue biopsies. 
Furthermore, ctDNA enables non-invasive tre- 
atment monitoring and can inform prognostic 
evaluations. Ongoing prospective clinical trials 
with ctDNA are focused on the diagnosis, sur-
veillance, and prognosis of CRC. With the rapid 
development of science and technology, liquid 
biopsies will certainly play a key role in the diag-
nosis and treatment of CRC.
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