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Abstract: Immunotherapy is a practical and promising treatment for advanced and recurrent endometrial cancer 
(EC). In this study, we identified an immune-related gene (IRG) signature to predict the overall survival (OS) and 
response to immune checkpoints inhibitors (ICIs) in patients with EC. The RNA expression profiles of EC were ob-
tained from The Cancer Genome Atlas database and then were filtered for IRGs based on the Immport database. 
Using the conjoint Cox regression model, an immune signature consisting of seven risk IRGs (CBLC, PLA2G2A, TNF, 
NR3C1, APOD, TNFRSF18, and LTB) was developed. The immune signature was independent of other clinical fac-
tors and was superior to the traditional staging method for OS prediction in EC. Immunohistochemistry staining from 
the Human Protein Atlas database and quantitative real-time PCR analysis of EC samples were also performed to 
validate the expression levels of risk IRGs. By further analyzing the tumor microenvironment in EC, patients in the 
low-risk subgroup showed a higher immune cell infiltration status, which was associated with a better prognosis. 
Moreover, the tumor mutational burden and immunophenoscore analysis demonstrated that the low-risk subgroup 
was more sensitive to ICI-based immunotherapy. These findings might shed light on the development of targeted 
treatment and novel biomarkers for patients with EC.
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Introduction 

Endometrial cancer (EC) is the fourth most 
commonly diagnosed malignancy worldwide, 
accounting for 4.8% of all cancer diagnoses 
and 2% of all cancer deaths [1]. The incidence 
and mortality of EC have been increasing re- 
cently, with the United States reporting approxi-
mately 61,880 newly diagnosed cases and 
12,160 cancer-related deaths in 2019 [2]. 
Standard treatment, including surgery, chemo-
therapy, and radiotherapy, has improved the 
prognosis of early-stage EC with a 5-year sur-
vival rate of 95% [3]. However, there are rela-
tively few treatment options for advanced/
recurrent EC patients, and the median survival 
(12 to 15 months) of these patients remains 
dismal [4]. 

The tumor microenvironment (TME) has been 
reported to play a pivotal role in EC tumorigen-

esis [5]. The increasing tumor mutational bur-
den (TMB) and the presence of tumor-infiltrat-
ing lymphocytes in the TME have been associ-
ated with the presence of neoantigens, which 
contribute to the immunotherapy response in 
patients with EC [6]. Immune checkpoint inhibi-
tor (ICI)-based immunotherapy targeting certain 
immune checkpoint blockade (ICB) such as 
cytotoxic T lymphocyte antigen 4 (CTLA4), pro-
grammed cell death 1 (PD1), and programmed 
cell death-ligand 1 (PD-L1), has proven effec-
tive for different cancers [7, 8]. However, some 
types of relapsed EC are refractory to ICIs [9]. In 
recent years, new genomic databases and high-
throughput sequencing technologies have 
allowed the massive identification of tumor bio-
markers, which are emerging as a new hope for 
cancer therapy [10, 11]. Hence, it is imperative 
to develop a predictive biomarker for prediction 
prognosis and immunotherapy responsiveness 
of EC patients.
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Increasing evidence has demonstrated that 
immune-related genes (IRGs) have a significant 
impact on predicting the prognosis of cancer, 
such as cervical cancer [12], ovarian cancer 
[13], and lung cancer [14]. As little is known 
about the role of IRGs in EC, our efforts were 
concentrated on developing an immune signa-
ture based on IRGs with predictive ability for EC 
patients. In addition, we explored the relation-
ship of the immune signature with tumor-infil-
trating immune cells, TMB, as well as the immu-
nophenoscore (IPS) of EC, which may provide 
an in-depth insight into precision treatment for 
this malignancy. 

Material and methods

Patients and data acquisition

The gene expression profiles of 566 EC sam-
ples were retrieved from TCGA database 
(https://tcga-data.nci.nih.gov/tcga/). The list of 
2498 IRGs were identified from the ImmPort 
database (http://www.immport.org/) [15]. A 
total of 318 cancer-related transcription fac-
tors (TFs) were downloaded from the Cistro- 
me project (http://www.cistrome.org/) [16]. 
Corresponding clinical information and TMB 
data downloaded from TCGA were also integrat-
ed into further analysis. We matched mRNA 
expression data with clinical information using 
patients’ barcodes, and patients with overall 
survival (OS) were less than 90 days were 
excluded. Ultimately, we obtained 503 EC 
cases for survival analysis.

Differential gene expression analysis and func-
tional annotation

The differentially expressed genes (DEGs) and 
differentially expressed TFs (DETFs) between 
tumor tissue (n = 543) and normal tissue (n = 
23) were compared using the “limma” R pack- 
age (http://www.bioconductor.org/packages/
release/bioc/html/limma.html) with Wilcoxon 
signed-rank test [17]. A false-discovery rate 
(FDR) < 0.05 and |log2 fold change (FC)| > 2 
were defined as the thresholds. The differen-
tially expressed IRGs (DEIRGs) were generated 
from the intersection of the DEGs and IRGs list. 
We further investigated the functions of those 
DEIRGs based on the Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses using the 

“clusterProfiler” R package [18]. A P-value < 
0.05 was considered statistically significant. 

Establishment of the immune signature for EC

A total of 503 patients with EC were randomly 
stratified into the training cohort and the test-
ing cohort at a 1:1 ratio. The training cohort 
was used to develop the immune signature, 
while the testing cohort and total cohort were 
used for validating the results. In the training 
cohort, univariate Cox regression analysis was 
used to identify the prognostic DEIRGs. Next, 
multivariate Cox regression analysis with step-
wise selection was performed to construct the 
prognostic immune signature for evaluating the 
survival of patients with EC [19]. We calculated 
the risk score for each patient using expression 
counts of risk IRGs and the regression coeffi-
cients from multivariate Cox model. This risk 
score was calculated using the following formu-
la: Risk score = (expression of Gene 1 × coeffi-
cient of Gene 1) + (expression of Gene 2 × coef-
ficient of Gene 2) + … + (expression of Gene n × 
coefficient of Gene n). patients were then clas-
sified into high- and low-risk subgroups based 
on the median value of the risk score in the 
training cohort. We performed survival analysis 
to compare the OS between high- and low-risk 
groups, and displayed the results using Kaplan-
Meier curves. The receiver operating character-
istic (ROC) curves were used to graphically veri-
fy the discrimination of the immune signature, 
and an area under the ROC curve (AUC) > 0.60 
was regarded as acceptable for prediction [20]. 

Regulatory mechanisms of prognostic DEIRGs 
and DETFs

TFs are directly involved in the expression of 
relevant IRGs [21]. The Cistrome project pro-
vides the regulatory association between the 
TFs and transcriptome in TCGA profiles. We 
constructed regulatory networks of prognostic 
DEIRGs and DETFs for visual analysis using a 
standard correlation of coefficient > 0.4 and a 
filter threshold of P < 0.001. The regulatory net-
works were presented using Cytoscape soft-
ware version 3.6.1.

Independent prognosis analysis and building a 
nomogram 

To further investigate whether the immune sig-
nature could be an independent prognostic fac-
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tor in EC, we performed univariate and multi-
variate Cox analyses using the entire cohort by 
integrating the immune signature and clinical 
factors. Based on the results, we constructed a 
nomogram to predict the probability of 3- and 
5-year OS of patients with EC. The predictive 
performance of the nomogram was visualized 
using the ROC curves. Moreover, correlation 
analysis was conducted to analyze the interac-
tions between our immune signature (the risk 
score and risk IRGs) and clinical factors (age, 
grade, stage, histological types). A P-value < 
0.05 denoted statistical significance.

Validation of the risk IRGs

We further evaluated the expression patterns 
of risk IRGs at the translational and transcrip-
tional level. The immunohistochemistry stained 
maps of risk IRGs in normal and EC tissues 
were obtained from The Human Protein At- 
las (HPA) database (https://www.proteinatlas.
org/), which is an open access database avail-
able to the public for the exploration of the 
human proteome. 

Besides, we performed quantitative real-time 
PCR (qRT-PCR) analysis to detect the mRNA 
expression levels of risk IRGs using 10 pairs of 
matched samples from tumor tissues and adja-
cent normal tissues. These samples were ob- 
tained from EC patients and immediately stored 
in a freezer at -80°C until use. The experiment 
was approved by the Ethical Committee of the 
Third Affiliated Hospital of Sun Yat-sen Uni- 
versity, and all participated patients are 
informed consent. 

Total RNA was extracted using TRIzol Reagent 
(Invitrogen, Carlsbad, CA, USA), and the 
PrimeScript™ RT reagent kit (Takara Biotech, 
Dalian, China) was used to react RNA and syn-
thesize single-stranded complementary DNA 
according to the manufacturer’s instructions. 
Real-time quantification was further performed 
using Talent qPCR PreMix (SYBR-Green) 
(Tiangen Biotech, Beijing, China) according to 
the manufacturer’s protocols. The sequences 
of the primers used are reported in Table S1. 
GAPDH was used as the endogenous control. 
We recorded the cycle threshold (Ct) of each 
gene and the relative gene expressions were 
calculated using the 2-ΔΔCt method (ΔCt = Ct 
target gene-Ct internal control).

Estimation of tumor-infiltrating immune cells

Immune cells are the main components of TME 
and correlate with prognosis. We estimated the 
relative abundance of 22 types of infiltrating 
immune cells in EC using the CIBERSORT algo-
rithm, which is a machine learning method 
based on support vector regression in gene 
expression data of TCGA samples [22]. The 
Wilcoxon rank-sum test was then used to 
assess the differential infiltrating density 
between high- and low-risk subgroups.

Mutation analysis 

The mutation data containing somatic variants 
in TCGA were stored in mutation annotation for-
mat form and analyzed using the “maftools” R 
package [23]. The TMB counts for each EC 
sample were measured as follows: (total muta-
tion/total covered bases) × 10^6 [24]. Di- 
fferences in TMB were compared between 
high- and low-risk subgroups, and the higher 
TMB counts indicated higher sensitivity to 
immunotherapy [25].

Immunophenoscore analysis

The Immunophenoscore (IPS) of EC patients 
was retrieved from the Cancer Immunome Atlas 
(TCIA) (https://tcia.at/home), which reflects 
patients’ capability to respond to ICIs [26]. 
Immunosuppressive cells, effector cells, MHC 
molecules, and immunomodulators were de- 
fined as the four components of IPS. The scale 
of the IPS ranged from 0-10 and was deter-
mined by summing the corresponding gene 
expression z-scores, whereby higher scores 
were positively associated with increased 
immunogenicity.

Statistical analysis

Categorical variables were presented as fre-
quency (n) and proportion (%); continuous vari-
ables were described as mean ± standard error 
(SE). The differences in variables were tested 
using chi-square tests, t-tests, or nonparamet-
ric tests, as appropriate. The association of 
variables was assessed using Spearman’s cor-
relation coefficient test. Construction and eval-
uation of the immune signature were analyzed 
using univariate and multivariate analyses, and 
survival differences were compared using the 
log-rank test. Statistical analyses were per-
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formed using R software (version 3.5.2.) and 
Graphpad Prism 7. A P-value of < 0.05 for the 
two-sided tests was regarded statistically 
significant.

Results

Acquisition of DEIRGs and functional annota-
tion

A total of 503 patients with EC were identified 
from the TCGA database based on the inclu-
sion criteria. Patients were then divided into 
the training cohort (n = 255) and testing cohort 
(n = 248). As listed in Table 1, there were no  
significant differences in clinical variables 
between the two cohorts. A total of 2354 DEGs 
were identified and were included in accor-
dance with the set standards. Of these, 175 
were DEIRGs, including 108 upregulated genes 
and 71 downregulated genes (Figure S1). 
Functional enrichment analysis showed that 
the DEIRGs were involved in immune- or inflam-
mation-related process. The most enriched 
terms in the GO analysis for cellular compo-
nents, biological processes, and molecular 
function were “external side of plasma mem-
brane”, “cell chemotaxis”, and “receptor-ligand 
activity”, respectively (Figure 1A). KEGG path-
ways analysis demonstrated that “cytokine-
cytokine receptor interaction”, “chemokine sig-
naling pathway”, “MAPK signaling pathway”, 

and “PI3K-Akt signaling pathways” were en- 
riched in DEIRGs (Figure 1B).

Identification of an immune signature based 
on DEIRGs

To construct a prognostic immune signature, 
we performed univariate and multivariate Cox 
regression analyses based on the above 175 
DEIRGs in the training cohort. By screening 
using the univariate analysis, 18 OS-related 
DEIRGs were identified (Table S2). Next, we 
screened these 18 prognostic DEIRGs using 
multivariate analysis with stepwise selection. 
Seven risk IRGs were selected to construct the 
prognostic model (Table 2). Four of these seven 
IRGs were associated with poor prognosis 
(CBLC, PLA2G2A, TNF, NR3C1), while the three 
remaining genes (APOD, TNFRSF18, LTB) 
served as protective factors for EC patients. 
The individualized risk scores weighted by the 
relative coefficients were calculated as follows: 
Risk score = (expression of CBLC × 0.013611) 
+ (expression of TNF × 0.035927) + (expres-
sion of PLA2G2A × 0.032196) + (expression of 
NR3C1 × 0.165537) + (expression of APOD × 
-0.028888) + (expression of TNFRSF18 × 
-0.019835) + (expression of LTB × -0.020554). 
Based on this model, we calculated and ranked 
the risk scores for each EC patient and the 
median value in the training cohort was defined 
as the cut-off point. Subsequently, the EC 

Table 1. Clinical characteristics of patients with EC

Characteristics Group
Training  
cohort  

(n = 255)

Testing  
cohort  

(n = 248)

Total  
cohort  

(N = 503)
Statistical test P 

value

Age (years) ≤ 65 139 (54.7%) 148 (59.5%) 287 (57.1%) χ2 test 0.271

> 65 116 (45.3%) 100 (40.5%) 216 (42.9%)

Race White 186 (73.0%) 171 (69.0%) 357 (71.1%) Fisher’s exact test 0.541

Black 54 (21.2%) 56 (22.6%) 110 (21.9%)

Asian 8 (3.1%) 14 (5.6%) 22 (4.2%)

Other* 7 (2.7%) 7 (2.8%) 14 (2.8%)

Grade G1 99 (38.8%) 102 (41.1%) 201 (39.9%) χ2 test 0.051

G2 75 (29.4%)  71 (28.6%) 146 (29.0%)

G3 81 (31.8%) 75 (30.3%) 156 (31.1%)

stage Early (I&-II) 188 (73.7%) 179 (72.2%) 367 (72.9%) χ2 test 0.554

Advanced (III&-IV) 67 (26.3%) 69 (27.8%) 136 (27.1%)

Histological types Endometroid endometrial adenocarcinoma 185 (72.5%) 191 (77.0%) 376 (74.8%) Fisher’s exact test 0.562

Mixed serous and endometroid carcinoma 11 (4.3%) 8 (3.2%) 19 (3.7%)

Serous endometrial adenocarcinoma 59 (23.1%) 49 (19.8%) 108 (21.5%)

Vital status Alive 205 (80.4%) 212 (84.5%) 417 (82.9%) χ2 test 0.185

Dead 50 (19.6%) 36 (14.5%) 86 (17.1%)

Survival time (mean ± SE, days) 1257±60.69 1186±49.45 1222±39.20 t-test 0.364
Other*: American native, Alaska native, or Pacific islander.
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patients in the training, testing, as well as in the 
overall cohort were respectively classified into 
high- and low-risk subgroups. The rank of the 
risk score, survival status, and the expression 
patterns of the seven risk IRGs in the EC 
patients of each cohort are illustrated in Figure 
2A-C. The Kaplan-Meier survival curves showed 
that patients in the high-risk subgroup had 
worse prognosis than the low-risk subgroup (P 
< 0.01, Figure 2D). The ROC curves of the 
immune signature also showed a good predic-

As mentioned above, the 18 OS-related prog-
nostic DEIRGs were identified by conducting a 
univariate Cox regression analysis based on 
175 DEIRGs. To further investigate the dysregu-
lation mechanisms of EC patients, we con-
structed the prognostic DEIRG-DETF regulatory 
networks (Table S3). The resulting networks 
showed that 13 prognostic DEIRGs were asso-
ciated with 29 DETFs in EC based on the cor-
relation coefficient > 0.4 and P < 0.001 (Figure 
S2).

Figure 1. Functional enrichment analyses of the DEIRGs. A. The dot plot of the top 10 GO items enriched in the 
DEIRGs. (BP, biological process; CC, cellular component; MF, molecular function). B. The bar plot of the top 30 KEGG 
pathways enriched in the DEIRGs.

Table 2. Multivariate Cox regression model results of risk IRGs in 
immune signature
Gene Regulation Coefficient HR (95% CI) P value
CBLC Up 0.013611 1.0137 (1.0065-1.0208) 0.00015
TNF Up 0.035927 1.0365 (1.0115-1.0622) 0.00395
LTB Up -0.020554 0.9796 (0.9559-1.0039) 0.09986
TNFRSF18 Up -0.019835 0.9803 (0.9511-1.0104) 0.19888
PLA2G2A Down 0.032196 1.0327 (0.9969-1.0697) 0.07327
NR3C1 Down 0.165537 1.1801 (1.0428-1.3352) 0.00865
APOD Down -0.028888 0.9715 (0.9407-1.0032) 0.07822
HR: hazard ratio; CI: confidence interval.

tive accuracy (Figure 2E). 
The AUCs of the immune sig-
nature in the training cohort 
for predicting the 1-, 3-, and 
5-year survival were 0.724, 
0.705, and 0.698, respec-
tively. The results of the 
AUCs in the testing and total 
cohort were similar to those 
of the training cohort. 

Construction of the prog-
nostic DEIRGs-DETFs regu-
latory network
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Figure 2. Identification of the prognostic immune signature in the training, testing, and total TCGA cohort. A. Distribution of the risk score in patients with EC. Pa-
tients were divided into high- and low-risk subgroups based on the median value of the calculated risk score (vertical black line). B. Scatter plots of survival status 
in patients with EC. C. Heatmap of risk IRG expression patterns of high- and low-risk subgroups. D. Survival analysis of the immune signature for patients with EC. 
E. Time-dependent ROC analysis of immune signature for patients with EC.
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Assessment of independent prognostic and 
construction of the nomogram

We conducted both univariate and multivariate 
Cox regression analyses using the entire cohort 
and including clinical factors and risk score 
(Table 3). The results showed that age, stage, 
grade, pathological type, and risk score were 
independently associated with the OS in uni-
variate analysis (P < 0.05). After adjusting for 
confounding factors, the multivariate analysis 
demonstrated that the risk score could be an 
independent prognostic predictor of OS in EC 
patients (P < 0.05). We constructed a time-
dependent ROC to compare the predictive 
capability of the risk score and other clinical 
factors. The results showed that our immune 
signature was more accurate in predicting OS 
than stage, grade, or age (Figure S3). To facili-
tate the clinical utility of the immune signature, 
we built a predictive nomogram for OS with four 
prognostic predictors: age, stage, grade, and 
risk score (Figure 3A). Compared to the single 
factors alone, the integrated nomogram pre-
sented the largest AUC in the ROC analysis. The 
AUCs of the nomogram at 3- and 5-years were 
0.785 and 0.793, respectively (Figure 3B, 3C).

We also performed a correlation analysis com-
paring the immune signature and the clinical 
factors of EC in the total cohort (Table S4). The 
expression of NR3C1 and TNF were higher in 
older patients, while the expression of APOD 
was higher in younger patients (≤ 65 vs. > 65, P 
< 0.05, Figure 4A-C). The tumor grade increased 
as the levels of NR3C1, PLA2G2A, and the risk 
score increased, while the grade decreased as 
the levels of APOD, LTB, and TNFRSF8 increased 
(G1 vs. G2 vs. G3, all P < 0.05, Figure 4D-I). The 
expression of APOD was higher in patients  
with early stage disease than in those with 
advanced-stage, but the expression pattern of 

NR3C1 showed the opposite relationship (ear-
ly-stage vs. advanced-stage, all P < 0.05, Figure 
4J, 4K). With regard to pathological types 
(endometrioid adenocarcinoma vs. mixed 
serous and endometrioid carcinoma vs. serous 
endometrial adenocarcinoma), the risk score 
was higher in mixed or serous adenocarcino-
ma, while the expression of NR3C1 and TNF 
were significantly higher in mixed and serous 
endometrial carcinoma, respectively, whereas 
the expression of APOD and TNFRSF18 were 
significantly higher in endometroid adenocarci-
noma (all P < 0.05, Figure 4L-P). These results 
illustrated that the dysregulated expression of 
IRGs was correlated with the development of 
CC.

Validation of seven risk IRGs

We further verified the expression patterns of 
risk IRGs in terms of protein and mRNA levels. 
The immunohistochemistry staining from HPA 
showed that six risk IRGs (CBLC, LTB, 
TNFRSF18, PLA2G2A, NR3C1, APOD) were dys-
regulated in EC samples (Figure 5A). The 
expression levels of CBLC, LTB, and TNFRSF18 
were higher in EC samples compared to normal 
samples, whereas the expression levels of 
PLA2G2A, NR3C1, APOD were lower in EC sam-
ples than those in normal samples. TNF was 
missing in the immunohistochemistry data-
base of HPA. The mRNA expression of the 
seven risk IRGs were also validated using qRT-
PCR in 10 pairs of matched samples obtained 
from EC patients (Figure 5B). The qRT-PCR 
results indicated that the relative mRNA expres-
sion of CBLC, TNF, LTB, and TNFRSF18 in tumor 
tissues was significantly higher than that in 
adjacent normal tissues, whereas the relative 
mRNA expression of PLA2G2A and APOD was 
significantly lower in tumor tissues compared 
to adjacent normal tissues (all P < 0.05). 

Table 3. Univariate and multivariate Cox regression analyses for OS in the total EC cohort

Variables
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value
Age 1.034 (1.014-1.055 ) 0.0006 1.025 (1.003-1.047) 0.0204
Race 0.854 (0.641-1.138) 0.2831
Grade 2.773 (1.806-4.257) < 0.0001 2.102 (1.334-3.310) 0.0013
Stage 3.891 (2.550-5.938) < 0.0001 3.162 (2.013-4.968) < 0.0001
Histological types 1.720 (1.385-2.135) < 0.0001 1.082 (0.847-1.383) 0.524
Risk score 1.045 (1.030-1.061) < 0.0001 1.032 (1.016-1.048) < 0.0001
HR: hazard ratio; CI: confidence interval.
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However, there was no significant difference in 
terms of NR3C1 expression (P > 0.05).

TME changes associated with immune signa-
ture in EC

To reveal the correlations of the TME with 
immune signature in EC, we analyzed differ-
ences in the presence of tumor-infiltrating 
immune cells in the high- and low-risk sub-
groups using the CIBERSORT algorithm. Among 
the 22 immune cell types, B cells naïve, macro-
phages M1, and dendritic cells activated were 
positively correlated with the risk score, while T 
cells CD8, T cells regulatory (Tregs), NK cells 
activated, and dendritic cells resting were neg-
atively correlated with the risk score (Figure 
6A). Furthermore, the higher proportion of T 

cells CD8, Tregs, NK cells activated, and den-
dritic cells resting were significantly associated 
with better prognosis for EC in the survival anal-
yses (Figure 6B). These results may partially 
explain the poorer prognosis of patients in the 
high-risk subgroups. 

The immune signature and mutation profile

The landscape of the mutation profile in EC is 
displayed in Figure 7A. The top 10 frequently 
mutated genes in EC patients were: PTEN, 
PIK3CA, ARID1A, TTN, TP53, PIK3R1, KMT2D, 
CTCF, MUC16, and CTNNB1. We found that 
TMB was higher in the low-risk subgroup than 
in the high-risk subgroup (P = 0.004, Figure 
7B). Moreover, patients with a higher TMB had 
a better prognosis than those with low TMB, 

Figure 3. Nomogram and ROC curves for predicting the prognosis of EC at 3- and 5-years. A. Nomogram for predict-
ing OS. There are four factors in this nomogram: age, grade, stage, and risk score. Each of them generates points 
according to the line drawn upward. And the total points of the four factors of an individual patient lie on “Total 
Points” axis which corresponds to the probability of OS rates at 3- and 5-years. B. ROC curves for OS at 3-years. C. 
ROC curves for OS at 5-years.



Immune signature for endometrial cancer

540	 Am J Transl Res 2021;13(2):532-548



Immune signature for endometrial cancer

541	 Am J Transl Res 2021;13(2):532-548

although this difference was not statistically 
significant (P = 0.138, Figure 7C).

Stratification of patients to immunotherapy

Previous studies have demonstrated that the 
IPS was correlated with responses to ICI-based 

immunotherapy [27]. In the present study, we 
comprehensively explored the correlation of 
our immune signature with the IPS in EC 
patients. Scores for IPS, IPS-CTLA4, IPS-PD1/
PD-L1/PDL2 + CTLA4, and IPS-PD1/PD-L1/
PD-L2 were calculated to assess the potential 
for beneficial treatment with ICIs in EC patients. 

Figure 4. The correlation between the immune signature and clinical factors of patients with EC in the TCGA cohort. 
A-C. Differences in expression of APOD, NR3C1, and TNF in terms of age (≤ 65 or > 65 years). D-I. Differences in the 
expression of APOD, LTB, NR3C1, PLA2G2A, risk score, and TNFRSF18 across pathological grades (G1, G2, and G3). 
J, K. Differences in expression of APOD and NR3C1 between the pathological stage (early/advanced). L-P. Differ-
ences in the expression of the risk score, APOD, NR3C1, TNF, and TNFRSF18 across histological types (endometri-
oid endometrial adenocarcinoma, mixed serous and endometrioid carcinoma, and serous endometrial carcinoma).

Figure 5. Validation of the risk IGRs expression at the protein and mRNA levels. A. Immunohistology assay of the risk 
IGRs using data from the HPA database. Protein levels of CBLC in normal tissue (staining: not detected; intensity: 
negative; quantity: none) and tumor tissue (staining: low; intensity: moderate; quantity: < 25%). Protein levels of LTB 
in normal tissue (staining: not detected; intensity: negative; quantity: none) and tumor tissue (staining: medium; 
intensity: moderate; quantity: > 75%). Protein levels of TNFRSF18 in normal tissue (staining: not detected; intensity: 
negative; quantity: none) and tumor tissue (staining: medium; intensity: moderate; quantity: 75%-25%). Protein 
levels of PLA2G2A in normal tissue (staining: low; intensity: moderate; quantity: < 25%) and tumor tissue (staining: 
not detected; intensity: negative; quantity: none). Protein levels of NR3C1 in normal tissue (staining: medium; inten-
sity: strong; quantity: < 25%) and tumor tissue (staining: not detected; intensity: negative; quantity: none). Protein 
levels of APOD in normal tissue (staining: low; intensity: moderate; quantity: < 25%) and tumor tissue (staining: not 
detected; intensity: negative; quantity: none). B. qRT-PCR results of the expression of CBLC, TNF, LTB, TNFRSF18, 
PLA2G2A, NRC31, and APOD in 10 matched samples from EC tissues and adjacent normal tissues.
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Figure 6. Association between the immune signature and tumor-infiltration of immune cells in EC based on the TCGA 
dataset. A. Violin plots showing the relative proportion of 22 immune cell types in high- and low-risk subgroups. The 
white dots inside the violin represent the median values. B. Kaplan-Meier curves showing the correlation of immune 
cell infiltration and OS for patients with EC, including naive B cells, CD8 T cells, Tregs, activated NK cells, M1 mac-
rophages, and resting dendritic cells.

As shown in Figure 8A, patients in the low-risk 
subgroup had relatively higher scores in all four 
categories (P < 0.0001). Meanwhile, patients in 
the low-risk subgroup were associated with the 
higher expression of PD1 and CTLA4 (P < 
0.0001, Figure 8B). The expression of PD-L2 
and PD-L1 was also higher in the low-risk sub-
group. However, the differences were not statis-

tically significant. These results indicated that 
patients in the low-risk subgroup expressed a 
more immunogenic phenotype and were prom-
ising candidates for ICIs.

Discussion

Increasing evidence suggests that the TME 
contributes to cancer proliferation and progres-
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Figure 7. Mutational analysis of patients with EC. A. Waterfall plots of the mutational profile in the EC patient cohort. B. Kaplan-Meier curves showing the association 
of TMB and OS. C. Comparison of the TMB counts stratifying patients into high- and low-risk subgroups.
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sion [28]. Some cancer cells can acquire an 
immune escape phenotype by over- or under-
expression of certain IRGs, thereby creating a 
locally immunosuppressed environment [29]. 
Hence, the expression pattern of IRGs may rep-
resent a critical biomarker for patients with EC. 
Previous studies have demonstrated that ECs 
with hypermutations of polymerase ε or hyper-
mutated/microsatellite instability were particu-
larly responsive to ICIs [30, 31]. However, other 
studies indicated that patients with microsatel-
lite stable cancers were insensitive to the anti-
cancer immune response [32]. The complexity 
of the TME is of great importance, and differ-
ences in expression of multiple IRGs may con-
tribute to improve risk assessment in EC, as 
this approach could screen patients who would 
benefit from immunotherapy.

Currently, the majority of risk stratification sys-
tems applied in EC use the composite of clinical 
stage (including lymph node involvement and 
the depth of myometrial invasion), grade, and 
histologic types [33]. Genomic factors used as 
predictive biomarkers for EC remains investiga-
tional (such as the L1 cell adhesion molecule 

[L1CAM] and TP53). Besides, the immune risk 
model has been proven to be more effective 
than the reliance on a single gene for survival 
prediction in certain cancers [11, 34]. Based 
on this premise, we identified an immune-relat-
ed signature as a biomarker to assess EC prog-
nosis using the TCGA database. The developed 
signature comprises seven risk IRGs, including 
four high-risk factors (CBLC, TNF, PLA2G2A, 
and NR3C1) and three protective factors 
(APOD, TNFRSF18, and LTB). Among these risk 
IRGs, four genes (CBLC, TNF, LTB, and 
TNFRSF18) were overexpressed, while three 
genes (PLA2G2A, NR3C1, and APOD) showed 
lower expression in EC samples compared  
with normal endometrial samples. TNF and 
TNFRSF18 have been reported to be involved 
in the onset and progression of EC. A recent 
study has shown that TNF modulates the 
course of EC, and high TNF-alpha was associ-
ated with poorer disease-specific survival (P = 
0.034) and recurrence-free survival (P = 0.049) 
[35]. Wang et al. suggested that TNFRSF18 
played a protective role in the prognosis of EC, 
which was consistent with our results [36]. 
PLA2G2A is also regarded as a potent mediator 

Figure 8. Immunotherapy responses across different risk subgroups. A. Comparison of the IPS between high- and 
low-risk subgroups. B. Comparison of the expression of ICBs, including PD1, PD-L1, CTLA4, and PD-L2 in high- and 
low-risk subgroups.
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of the inflammatory process. Previous studies 
have demonstrated that higher expression of 
PLA2G2A was correlated with ovarian endome-
triosis and deep infiltrating endometriosis [37, 
38]. In our study, we found that PLA2G2A may 
be involved in the pathogenesis of EC and could 
be used as a biomarker to predict survival. 
APOD was identified as a protective factor in 
the current study. Germeyer et al. found that 
APOD was highly expressed in the endometri-
um of the proliferative and secretory phases, 
and participated in the endometrial repair 
mechanisms [39]. CBLC and LTB genes had 
been shown to mediate the regulation of the 
immune response in different cancer and thus, 
could serve as potential biomarkers for EC [40, 
41]. Functional enrichment analysis suggested 
that DEIRGs were widely involved in the in- 
flammatory process and immune regulation. 
Cytokine activity may promote the formation of 
tumor metastasis by modulating the TME [42]. 
The intracellular MAPK signaling cascade par-
ticipates in the immune escape response and 
in cell apoptosis, which promote carcinogene-
sis [43]. The immune signature we identified 
exhibited a strong predictive ability in the train-
ing, testing, and total cohorts. Furthermore, 
when combined with clinical variables, our 
model still remained an independent variable 
for predicting prognosis of EC.

Tumor-infiltrating immune cells play an impor-
tant role in modulating the TME status of EC 
[44]. Kübler et al. reported that the presence of 
tumor-associated macrophages in EC indicates 
poor prognosis and aggressive tumor behavior, 
including advanced-stage, tumor grade, lym-
phovascular space invasion, and lymph node 
metastasis [45]. Hu et al. suggested that the 
infiltration of Tregs and CD8+ T cells in EC sam-
ples were associated with a higher rate of 
MUC16 mutations, which presented a better 
prognosis [46]. In the present study, we found 
that the risk score was negatively correlated 
with the levels of specific immune cells, includ-
ing T cells CD8, Tregs, NK cells activated, and 
Dendritic cells resting, which were significantly 
associated with better prognosis. This result 
may provide a deeper insight into the immunity 
of EC.

We evaluated the expression patterns of our 
immune signature and IPS. The results showed 
significantly higher scores of IPS, IPS-PD1/
PD-L1/PDL2 + CTLA4, IPS-CTLA4, and IPS-
PD1/PD-L1/PD-L2 in the low-risk subgroup. 

Moreover, a higher expression of PD1 and 
CTLA-4 were also observed in the low-risk sub-
group, indicating that our immune signature 
could help identify patients who would benefit 
from ICI-based immunotherapy. In addition, a 
mutational analysis of EC was also performed 
to explore the signature’s prognostic ability. 
Previous studies have demonstrated that cer-
tain gene mutations, such as in PTEN, P53, and 
POLE, correlated with a favorable prognosis in 
EC patients [47-49]. Further, a higher hypermu-
tated status might enhance antitumor immune 
responses [46]. In our study, we found that the 
TMB was higher in the low-risk subgroup than 
in the high-risk subgroup, although there was 
no survival difference between the two groups. 
These results might further support the classi-
fication validity of our immune signature. 
However, the relationships and underlying 
mechanisms of the TMB, IPS, and the signature 
are not yet understood, and further research is 
needed.

We established a valid immune signature 
based on seven risk IRGs for survival prediction 
of EC and its response to immunotherapy. To 
the best of our knowledge, this is the first study 
to comprehensively analyze the relationships 
between EC and the TME and TMB. Besides, we 
evaluated the correlation between the risk sig-
nature and the IPS of EC, which may facilitate 
clinicians in making individualized treatment 
choices for targeted therapy. Of note, there 
were several limitations in the TCGA-based risk 
model. First, our study was primarily performed 
using a retrospective database; thus, it requires 
further validation in in vivo or in vitro trials with 
larger samples. Second, the available clinical 
information underreported the comorbidities of 
the patients, which could significantly impact 
on EC survival as competing events [50]. 
Besides, our immune signature only analyzed 
gene expression values without evaluating the 
intra-tumor heterogeneity or sampling bias 
inevitably generated in the process. To resolve 
the issues mentioned above, we will establish 
an inhouse EC sample database and incorpo-
rate these factors in future model deve- 
lopment.

Conclusions

In summary, we constructed and validated a 
prognostic immune signature for predicting the 
survival of EC patients. Moreover, our immune 
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signature may contribute to further stratify 
patients who are likely to benefit from immuno-
therapy and will facilitate the application of per-
sonalized treatment in the future. To further 
validate the predictive capability of this model, 
multicenter testing in clinical trials is needed.
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Table S1. Primer sequences used to amplify target 
genes by qRT-PCR
Gene name Primer sequences
CBLC Forward 5’-GCGCCTAGAAGAGCAATGC-3’

Reverse 5’-CTCGTCGTTGGCACTCCTT-3’
TNF Forward 5’-CCTCTCTCTAATCAGCCCTCTG-3’

Reverse 5’-GAGGACCTGGGAGTAGATGAG-3’
PLA2G2A Forward 5’-ATGAAGACCCTCCTACTGTTGG-3’

Reverse 5’-GCTTCCTTTCCTGTCGTCAACT-3’
NR3C1 Forward 5’-ACAGCATCCCTTTCTCAACAG-3’

Reverse 5’-AGATCCTTGGCACCTATTCCAAT-3’
APOD Forward 5’-ACAAGCATTTCATCTTGGGAAGT-3’

Reverse 5’-CATCAGCTCTCAACTCCTGGT-3’
TNFRSF18 Forward 5’-ACCCAGTTCGGGTTTCTCAC-3’

Reverse 5’-CCAGATGTGCAGTCCAAGC-3’
LTB Forward 5’-GGAGACGACGAAGGAACAGG-3’

Reverse 5’-GTAGAGGTAATAGAGGCCGTCC-3’
GAPDH Forward 5’-AGAAGGCTGGGGCTCATTTG-3’

Reverse 5’-AGGGGCCATCCACAGTCTTC-3’

Figure S1. Identification of DEIRGs between EC samples and adjacent normal samples. A. Heatmap of DEIRGs; the 
red to green spectrum indicates high to low genes expression. B. Volcano plot of DEIRGs.
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Table S2. Identification of OS-related DEIRGs in univariate analysis
Id HR HR.95 Low HR.95 High P-value
COLEC12 1.034147508 1.003354928 1.065885102 0.029470835
IL6 1.016114383 1.003934243 1.028442298 0.009373422
APOD 0.980081662 0.961078152 0.999460932 0.04401594
TNF 1.033384881 1.012874147 1.054310958 0.001324717
PLA2G2A 1.032546638 1.006483498 1.05928469 0.014072387
PDGFRA 1.026468498 1.00190481 1.051634412 0.034519285
TNFSF11 0.708988111 0.504824849 0.995719887 0.047175942
RAC3 1.012374161 1.001953011 1.022903699 0.019830215
FGF18 1.007797494 1.001368127 1.014268141 0.017375934
LTB 0.978826205 0.960899671 0.997087177 0.02325153
GHR 2.518167349 1.217213598 5.20957604 0.012777265
NPR1 1.01951431 1.007841382 1.031322435 0.001004106
NR2F1 1.017046616 1.00240859 1.031898398 0.022300925
NR3C1 1.187482462 1.075701624 1.310878934 0.000657608
THRB 1.21546853 1.091688555 1.35328317 0.000369689
TNFRSF18 0.965789461 0.940434247 0.991828282 0.010333669
VIPR2 0.312895564 0.114101788 0.858037684 0.023980762
CBLC 1.011341836 1.00530124 1.017418729 0.000224466

Table S3. The relationship between DEIRGs and DETFs in the network
DETFs DEIRGs correlation P-value Regulation
ATF3 IL6 0.308031404929953 1.62114235550776e-12 positive
ATF3 TNF 0.266285554139827 1.30169007189794e-09 positive
ATF3 THRB 0.216931212632701 9.02603150282224e-07 positive
CBX2 RAC3 0.363774253945774 3.49214962694847e-17 positive
CBX7 GHR 0.279541553691605 1.75336619303748e-10 positive
CBX7 NR3C1 0.377395071059455 1.79622745686738e-18 positive
CBX7 VIPR2 0.231368755245739 1.54162097737631e-07 positive
CENPA RAC3 0.357439906777772 1.32373713844432e-16 positive
CENPA FGF18 0.204577508521719 3.73169370147434e-06 positive
CENPA NPR1 0.226035363058598 3.00256874554863e-07 positive
E2F1 RAC3 0.485199105403187 4.57961528279263e-31 positive
EBF1 GHR 0.256270332369018 5.51300430443539e-09 positive
EBF1 NR3C1 0.224424978336333 3.66038205619704e-07 positive
EGR1 IL6 0.226980671967709 2.67111348761324e-07 positive
EGR1 TNF 0.265434774432312 1.47497736335668e-09 positive
ELF5 PLA2G2A 0.306755737758867 2.02198510605108e-12 positive
EZH2 RAC3 0.293419613227561 1.91114497832589e-11 positive
FOS IL6 0.232413312101021 1.35035285155692e-07 positive
FOS TNF 0.274679503397533 3.70405494528926e-10 positive
FOS PDGFRA 0.216471191683418 9.53041458237046e-07 positive
FOXA2 NPR1 -0.278630150497621 2.01950327083339e-10 negative
FOXA2 NR3C1 -0.251889619746694 1.01710149178932e-08 negative
FOXA2 THRB -0.32299917844869 1.11879059832644e-13 negative
FOXM1 RAC3 0.308065737943435 1.6115068328927e-12 positive
FOXP3 TNFSF11 0.270735467001749 6.72179718026405e-10 positive
FOXP3 NR3C1 0.264780705357728 1.6232423865395e-09 positive
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FOXP3 VIPR2 0.216675693742079 9.30293825384315e-07 positive
GATA6 NR3C1 0.246097826886221 2.24605446643314e-08 positive
H2AFX RAC3 0.318573325254082 2.50539268516018e-13 positive
LHX2 RAC3 0.240012508028483 5.05456206027217e-08 positive
LMNB1 RAC3 0.226617600701285 2.79402194460599e-07 positive
MAF GHR 0.334651832317134 1.25620784176445e-14 positive
MAF NR2F1 0.323097297925051 1.09880640276601e-13 positive
MAF NR3C1 0.304777438458751 2.84228323906343e-12 positive
MAF VIPR2 0.214158413214049 1.25042593045682e-06 positive
MITF RAC3 -0.20201238324329 4.95799474079648e-06 negative
MITF NR3C1 0.293909300493047 1.76342808708356e-11 positive
MITF VIPR2 0.239503298778673 5.40423883788499e-08 positive
MYBL2 RAC3 0.276601034385597 2.76104676579287e-10 positive
MYH11 GHR 0.327008637256549 5.32797665558483e-14 positive
MYH11 NR3C1 0.228774926398931 2.13629545646838e-07 positive
NCAPG RAC3 0.261618395380238 2.56987644518618e-09 positive
NR2F1 GHR 0.227670583814222 2.45175545096717e-07 positive
NR2F2 NR2F1 0.263567251956419 1.93757539706772e-09 positive
NR2F2 NR3C1 0.225422868647448 3.2381007692353e-07 positive
NR2F2 VIPR2 0.488978626862818 1.35629695067881e-31 positive
NR3C1 GHR 0.310564292966182 1.04210390047694e-12 positive
NR3C1 NPR1 0.266340210338777 1.29126122186693e-09 positive
NR3C1 THRB 0.302509985591805 4.1860258706315e-12 positive
NR4A1 IL6 0.27042857740235 7.03799742105166e-10 positive
NR4A1 TNF 0.256578921803519 5.27794182670655e-09 positive
PBX1 GHR 0.343381320651369 2.29447231842922e-15 positive
PBX1 NR3C1 0.219004838881719 7.05355856454856e-07 positive
PBX3 GHR 0.211179093667132 1.76638883258687e-06 positive
PBX3 NR2F1 0.251150653670508 1.12652729945585e-08 positive
PBX3 NR3C1 0.301015524051666 5.39287963846918e-12 positive
SNAI2 PDGFRA 0.410515190801987 7.1917765099664e-22 positive
SNAI2 GHR 0.383715663552757 4.31857872949359e-19 positive
SOX17 NR3C1 -0.241844526202412 3.9684610861226e-08 negative
SPDEF NPR1 -0.262059863844956 2.41110067549646e-09 negative
SPDEF NR3C1 -0.245800205614768 2.33812648774133e-08 negative
SPDEF THRB -0.280276570372464 1.56391848042475e-10 negative
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Figure S3. Time-dependent ROC curves of immune signature and clinical factors in the total TCGA cohort at three 
and five year. A. ROC curves at 3-years. B. ROC curves at 5-years.

Table S4. The correlation analysis between the immune signature and clinical variables

Immune signature Age 
t-test (P)

Grade 
t-test (P)

Stage
t-test (P)

Histological type
t-test (P)

APOD 2.075 (0.039) 52.821 (3.389E-12) 3.538 (4.428E-04) 9.72 (0.008)
TNF -2.244 (0.025) 1.858 (0.395) -1.811 (0.072) 15.994 (3.364E-04)
PLA2G2A -0.084 (0.933) 12.763 (0.002) -1.053 (0.294) 2.617 (0.270)
LTB -1.332 (0.184) -7.231 (0.027) -0.475 (0.635) 4.257 (0.119)
NR3C1 -1.992 (0.047) 28.477 (6.551E-07) -2.805 (0.005) 57.893 (2.683E-13)
CBLC -1.424 (0.156) 0.175 (0.916) -0.93 (0.354) 5.8 (0.055)
TNFRSF18 0.363 (0.717) 9.998 (0.007) 1.75 (0.081) 13.555 (0.001)
Risk score -1.482 (0.140) 62.061 (3.339E-14) -1.778 (0.078) 47.751 (4.276E-11)

Figure S2. The prognostic DEIRGs-DETFs regulatory networks. A. Heatmap of DETFs; the red to green spectrum 
indicates high to low TF expression. B. Volcano plots of DETFs. C. Regulatory network of the prognostic DEIRGs 
and DETFs; the red circles indicate prognostic DEIRGs with hazard ratios > 1 (P < 0.05), the green circles indicate 
prognostic DEIRGs with hazard ratios < 1 (P < 0.05); the purple circles indicate DETFs involved in regulation of gene 
expression (correlation coefficient > 0.3, P < 0.05), the green lines represent negative regulatory relationships, and 
the red lines represent positive regulatory relationships.


