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Abstract: Coronavirus disease 2019 (COVID-19) infected by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has become a global pandemic disease with high morbidity and mortality. Inflammatory and thrombosis are 
its main manifestations. As an important organ of hemofiltration metabolism, the kidney is prone to blockage and 
destruction when filter high inflammatory and high viscous blood of COVID-19, resulting in the loss of a large amount 
of protein, aggravating blood concentration, and then worsening COVID-19 hypercoagulability, which may explain 
the phenomenon of erythrocytes aggregation blocking the capillary lumen and the main reason why the kidney has 
become the second largest involvement organs. Therefore, this review discusses the effects of pathophysiological 
mechanisms such as inflammatory storm, endothelial injury, phosphatidylserine expression, extracellular traps re-
lease on renal capillary thrombosis caused by COVID-19 infection. Meanwhile, in view of the above mechanisms, we 
put forward the potential targets of antithrombotic therapy, and graded management of patients, reasonable use 
of drugs according to the severity of the disease and the choice of time. And we support the view of prevention of 
thrombus before admission, continuous anticoagulation and drug choice after discharge. It is suggested that the 
symptomatic and supportive treatment of renal disease in critically ill patients should be combined with the concept 
of antithrombotic therapy. The ultimate goal is to reduce the occurrence and development of kidney disease, pro-
vide direction for the current management of COVID-19 with kidney disease, and reduce the mortality of COVID-19.
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Introduction

Coronavirus disease 2019 (COVID-19) caus- 
ed by severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) has become a global 
pandemic disease. Approximately 66 million 
confirmed cases, nearly 1.52 million deaths 
have been reported in the world. Current review 
studies have reported that abnormal coagula-
tion may be one of the most common causes of 
sudden death [1], associated with acute respi-
ratory distress syndrome (ARDS) and multiple 
organ dysfunction syndrome (MODS) [2, 3], 
while venous thromboembolism (VTE) is as- 
sociated with renal dysfunction [4] and renal 
complications are related to higher mortality in 
patients with COVID-19 [5]. Histopathological 
analysis of autopsy patients with COVID-19 sh- 
owed that SARS-CoV-2 existed in renal tissue 

under electron microscope, and microvascular 
obstruction was found by immunofluorescence 
staining. Fibrin thrombus appeared in partial 
segmental capillary lumen. The above results 
proved renal capillary obstruction and throm- 
bosis [6]. Renal blockage lead to ischemia and 
hypoxia, then disrupt the glomerular filtration 
barrier and renal tubular reabsorption, acceler-
ating protein loss, increasing blood viscosity 
and aggravating hypercoagulable state [7]. The- 
refore, explore the mechanism of renal capillary 
lumen thrombosis and take effective treatment 
measures are of great benefit to reduce renal 
injury, delay disease progression and decrease 
mortality.

Kidney plays an important role in regulating the 
homeostasis of the body, through filtration, 
reabsorption, secretion and other functions. 
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Under normal circumstances, soluble toxic ma- 
terials in blood need to be discharged by kidney 
circulation every day. It is easy to block when 
hypercoagulable blood passes through the kid-
ney, which may be the main reason why the kid-
ney is the second most affected organ in 
COVID-19. On the other hand, the destruction 
of renal filtration barrier aggravates hyperco-
agulability, which explains the phenomenon th- 
at renal injury is related to the high mortality  
of COVID-19-related coagulopathy. COVID-19 
patients with impaired kidney function showed 
not only increased risk of acute kidney injury 
(AKI), but also hematuria, albuminuria, elevat- 
ed serum creatinine and blood urea nitrogen, 
decreased glomerular filtration [5, 8-10]. AKI 
was reported to occur in all inpatients as high 
as 29% [6], and up to 50% of ICU patients, wi- 
th a high mortality rate [11]. The continuous 
renal replacement therapy (CRRT) can reduce 
the incidence of mortality, as a main therapy, 
but the therapeutic effect is not ideal [12-14]. 
Thus, finding other vital remedial treatment 
options is necessary. We further discuss the 
possible mechanism of coagulation disorder in 
renal capillary occlusion and thrombosis and 
put forward the view that coagulation plays a 
significant role in the progression of renal dis-
ease. Combined with the current clinical treat-
ment, the key step to provide a possible clinical 
treatment target for delaying renal injury in the 
future is to explore the timing of antithrombotic 
therapy.

Potential mechanisms of renal capillary 
thrombosis

Whether it is COVID-19 itself or kidney disease, 
the mechanism of thrombosis caused by both 
is closely related to Virchow’s Triad, showing 
vascular wall injury, blood viscosity increased 
and blood flow velocity slowed down [15]. En- 
dothelial cell injury is the most critical factor, 
when subendothelial matrix (collagen, von Wi- 
llebrand factor (VWF)) exposure, internal/exter-
nal coagulation pathways, platelets are activat-
ed. Meanwhile, injured endothelium falls off, 
resulting in endothelial normal anticoagulation 
weakening, fibrinolysis disorder. Injury of cells 
in circulation promotes phosphatidylserine ex- 
posure, as an important vector of Xase-pro- 
thrombinase complex in this process, promot-
ing thrombin generation, then slowing down bl- 
ood flow, aggravating blood stasis and throm-
bosis [16, 17]. The above are the common me- 

chanism of glomerular capillaries thrombosis 
(Figure 1). The main reason is the direct dam-
age of endothelium caused by prerenal isch-
emia, stress reaction and so on, which destroys 
the role of endothelium in vascular homeosta-
sis, appearing the aggregation of red blood 
cells, platelets, fibrin and so on.

The process of COVID-19 is inflammation-th- 
rombus-inflammation. Mild to moderate pati- 
ents showed inflammation-thrombus. Severe 
and critical patients showed thrombus-inflam-
mation and renal injury mostly occurred in this 
process, so renal capillary thrombosis was de- 
fined as thromboinflammation. The latter was 
used as early as 2004 to describe the platelet-
leukocyte reaction mediated by P-selectin-PS- 
GL1 interaction in coronary stents [18]. In this 
review, we extend its definition to the reaction 
between the activation of coagulant substanc-
es and immune cells. Inflammatory indicators 
appeared in patients with mild to moderate 
COVID-19, which behave as inflammation lead-
ing to activation of coagulation. While in severe 
and critical patients, multiple organs involved, 
extensive DIC and thrombotic microangiopathy 
(TMA) formed, and massive inflammation broke 
out at this time [19]. Due to ischemia and hy- 
poxia, endothelial injury and platelet aggrega-
tion lead to the accumulation of immune ce- 
lls and aggravates the inflammatory response, 
which is the main cause of death in patients 
with COVID-19. The above results lead us to 
think that early prevention of thrombosis and 
effective anti-thrombosis therapy at moderate 
and severe and critical patients are of great sig-
nificance to reduce renal injury, delay or stop 
the progression of the disease, and eventually 
minimize sequelae and mortality. Endothelial 
injury, activation of macrophages, monocytes, 
lymphocytes and platelets, as well as the re- 
lease of inflammatory factors [20-22] are in- 
volved in the occurrence and development of 
coagulation disorders in COVID-19. In view of 
the above, we will explore their effects in renal 
capillary thrombosis respectively (Figure 2).

Direct effect of virus and extensive endothelial 
dysfunction

SARS-CoV-2, SARS-CoV-1 and MERS-CoV, be- 
longing to the Coronaviridae, have the similar 
genomic structure and function [23]. A variety 
of coagulation mechanisms are involved in the 
occurrence and development of the disease 



Renal capillary thrombosis in COVID-19

7642	 Am J Transl Res 2020;12(12):7640-7656

infected by SARS-CoV-1 or MERS-CoV [24]. We 
consider that patients with COVID-19 may also 
have a similar coagulation disorder mecha-
nism. As an exogenous substance, virus can 
induce stress response, vasoconstriction, whi- 
ch lead to blood stasis and thrombosis. They 
can bind to varieties of cell surface receptors 
(endothelium, bronchial epithelium, type II alve-
olar epithelium, renal tubular epithelium, etc.). 
Obvious apoptosis is caused by changes such 
as aggregation, cell fusion, vacuolation, syncy-
tial formation. The translocation of vesicle and 
phosphatidylserine (PS) to the cell surface, nu- 
clear concentration and fragmentation are ob- 
served, regulated by the coronavirus family 
member S1 protein [25]. SARS-CoV infection 
found that apoptotic enzymes were involved in 
mitochondrial metabolism [26]. Additionally, 
MERS-CoV study found that it could effective- 
ly infect human primary T lymphocytes and ac- 
tivated exogenous and endogenous apoptosis 
pathways [27].

We speculate that apoptosis occurs during 
SARS-CoV-2 invasion, accompanied by PS ex- 
pose. We have confirmed that PS is involved in 
hypercoagulable state of renal diseases, such 
as diabetic kidney disease (DKD) and nephrotic 
syndrome [28, 29]. The histological analysis of 
COVID-19 infection in renal transplant patients 
found the accumulation of endothelium-relat- 
ed inflammatory cells and apoptotic bodies, 
then proposed apoptosis-related endothelial 
dysfunction [30]. Celestino Sardu et al. think 
that endothelium is the key target organ in 
COVID-19, its surface highly expresses virus-
targeted receptors [31]. Endothelial dysfunc-
tion is the main determinant of microvascular 
dysfunction [32]. The virus attacks renal endo-
thelium and leads to apoptosis with overex-
pression of PS, adhering factor VII and VIII, ac- 
tivating endogenous and exogenous coagula-
tion pathways, may be one of the mechanisms 
of glomerular microvascular thrombosis. At the 
same time, the increased expression of plas-

Figure 1. Cascade activation of capillary thrombosis. Blood viscosity, flow velocity and endothelial cell (EC) integrity 
play an important role in maintaining capillary blood homeostasis, especially EC integrity. When EC are damaged 
and subendothelial matrices, such as collagen and VWF, are exposed, they activate endogenous coagulation path-
ways and promote platelet adhesion and aggregation. Endothelial injury promotes PS exposure and TF expression, 
the latter activating exogenous coagulation pathway, then forming TF-VIIa complex in circulating blood, together with 
endogenous pathway promote Xa generation through PS, Ca2+ and VIIIa assistance. Xa and Va promotes IIa genera-
tion under the presence of II and Ca2+ on the PS, which further leads to fibrin deposition, the latter becomes dense 
fibrin clots under the action of XIIIa. Endothelial cells fall off in the process of injury, resulting in the weakening of 
their normal anticoagulation and maintenance of fibrinolysis homeostasis. When the blood passes through the 
damaged endothelium, it is easy to transform to procoagulation and fibrinolysis inhibition. The aggregation of red 
cells, platelets and fibrin in this process eventually promotes thrombosis.
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minogen activator inhibitor-1 (PAI-1), tissue fac-
tor (TF) and down-regulation of anti-thrombin in 
patients with COVID-19 can not only reflect the 
imbalance of endothelial function, but also the 

reason of glomerular fibrin thrombosis [33]. In 
addition to PS expose in endothelial cells, it 
may also exist in varieties of targeted cells 
attacked by virus. This process may be accom-

Figure 2. Possible mechanism and treatment direction of COVID-19-associated renal capillary thrombosis. Inflam-
matory and thrombus: SARS-CoV-2 binds to ACE2 receptors on the surface of immune cells (T cells, NK cells, 
macrophages), promoting the release of IL-6, IL-17, TNF-α, IL-8, IL-10, and the formation of particles, then further 
promotes the expression of CRP, which activates the RAAS system, increases the expression of anticoagulant and 
antifibrinolytic substances, promotes the expression of TF on the surface of macrophages, acting on endothelial 
cells and promoting PS exposure and fibrin thrombosis on it. Endothelial injury and thrombus: direct effect of virus 
leads to endothelial PS exposure and apoptosis; inflammatory factors cause endothelial procoagulation and anti-
fibrinolysis; the activation of the complement system aggravates endothelial injury; hypoxia leads to endothelial 
ischemia and Hypoxemia. The injured endothelium formed procoagulant particles with PS and TF expression and 
promoted multi-site thrombosis through circulating blood; expressed E-selectin, P-selectin, enhancing platelet and 
neutrophil aggregation; decreased expression of TFPI, anti-thrombin, PAI-1, impairing antithrombotic ability; promot-
ed the expression of inflammatory factors. After promoting the injury of renal endothelium, the gap increases, which 
leads to the leakage of plasma albumin. At the same time, viruses and immune cells also migrate to the epithelium 
of podocytes and renal tubules through the damaged endothelium. The increase of neutrophils produces NETs, 
and macrophages also express MET in oxidative stress environment. These extracellular traps lead to endothelial 
damage, promote the stability of thrombus and the release of inflammatory factors. Hypoxia can also activate the 
formation of VIIa and promote the production of thrombin, which acts on PAR and aggravates the release of inflam-
matory factors. The activation of complement system promotes the formation of renal membrane attack complex, 
aggravating oxidative stress and leads to disease progression. The expression of inflammation, endothelial injury 
and activation of coagulation factors in the process of thrombosis may be inhibited, which may be new methods to 
delay the progression of the disease.
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panied by the production of microparticles with 
PS expose. This phenomenon still needs to be 
explored further.

Cytokine storm

A large number of endothelial damage and ac- 
tivation lead to the high expression of P-selec- 
tin, binding to P-selectin glycoprotein ligand-1 
(PSGL-1), and E-selectin, which promotes the 
aggregation of neutrophils and macrophages, 
and further promotes the expression of infla- 
mmatory factors [34]. 10%-15% of COVID-19 
patients progressed to ARDS triggered by cyto-
kine storm [35], mainly in severe and critically 
ill patients. At present, studies have proved 
that inflammatory factors such as IL-6, IL-8, 
IL-10, IL-17, TNF-α increased in COVID-19 [36, 
37]. On the 8th day with symptoms of critical 
patients may need to use mechanical ventila-
tion and enter ICU treatment [36], consisted 
with the conclusion of Huang C et al. They fo- 
und that the presence of SARS-CoV-2 in the 
blood and the occurrence of AKI on the 7th day 
[38]. While IL-6 as an early elevated cytokine 
could be detected on the 4th day after the 
onset of symptoms. We believe that “cytokine 
storm” plays an indispensable role in the de- 
velopment of the disease from mild to severe, 
and its excessive accumulation contributes to 
the deterioration of the disease. Cytokines in- 
volved in the coagulation process [39-42] have 
been confirmed in a variety of diseases, inclu- 
ding coagulation abnormalities in the progr- 
ession of kidney diseases [40, 43] (Table 1). 
Inflammation can regulate blood coagulation by 
activating C-reactive protein (CRP), increasing 
TF exposure on monocytes and alveolar macro-
phages [44, 45], and then promote thrombin 
production and fibrin deposition. TF, FXa, viral 
factor or thrombin-activated protease activate 
receptor (PAR) signal, promote fibrin produc- 
tion and enhance fibrosis [46, 47]. PAR sig- 
naling can also enhance the inflammatory res- 
ponse of acute lung injury (ALI) by increasing 
the expression of pro-inflammatory cytokines, 
including IL-6, IL-8 [48, 49]. The process of hi- 
gh inflammation can lead to the occurrence of 
hypoxemia [50] and the environment promotes 
the activation of endothelial cells and endothe-
lial dysfunction, leading to prethrombotic state. 
CRP promotes the local release of PAI-1 from 
endothelial cells [51, 52], leading to secondary 
hyperfibrinolysis and promoting the occurren- 
ce of DIC. Also, bradykinin system is activated, 

then the production of bradykinin increases  
the expression of tissue plasminogen activator 
(t-PA). Effectively inhibiting the production of 
cytokines is of great significance to delay the 
progression of the disease.

ACE2 receptor and RAAS system

ACE2 receptor promotes the occurrence and 
development of COVID-19 disease. One of the 
most important beneficial functions of mem-
brane-bound and sACE2 is the degradation of 
angiotensin II into angiotensin. Therefore, ACE2 
receptors limit several harmful effects pro-
duced by the binding of angiotensin II (Ang II)  
to AT1 receptors, including vasoconstriction, 
increased inflammation and thrombosis. The 
activation of ACE2-AT1-7-Mas receptor has anti-
thrombotic effect. Mas receptor is expressed 
on the surface of platelets, which increases the 
release of prostacyclin and NO. NO has been 
proved to have a nephroprotective effect and 
reduce the occurrence of TMA [53]. SARS-
CoV-2 binds to the receptor on the surface of 
target cells. ACE2 receptor is down-regulated 
after membrane fusion, then ACE2 expression 
is decreased, and the antithrombotic effect of 
Mas receptor is weakened [54], leading to An- 
gII accumulation, which acts on AT1 receptor, 
induces the expression of t-PA, PAI-1 in endo-
thelial cells [50]. Free t-PA is neutralized by PAI-
1, resulting in damage to fibrinolytic system 
and fibrin accumulation. The reason for the 
deposition of fibrin in the kidney was explained.

RAAS is of utmost importance in the patholo- 
gical evolution of ARDS, and ACE2 is the ma- 
in component of RAAS [50]. The RAAS system 
is intrinsically linked to coagulation cascades, 
which may aggravate the process of immune 
thrombosis and further drive microthrombosis 
in COVID-19 [50]. Severe COVID-19 often sh- 
ows hypokalemia and hyperaldosteronemia, 
which can promote the growth of PAI-1, espe-
cially in renal tissue [55, 56]. The decrease of 
ACE2 can increase the level of aldosterone, 
promoting the expression of PAI-1, which leads 
to fibrinolysis inhibition and thrombosis.

Extracellular traps (ETs)

In addition to producing inflammatory factors, 
the extracellular traps produced by neutrophils, 
monocytes, macrophages and other inflamma-
tory cells can also be used as an important 
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Table 1. Cytokines procoagulant coagulation mechanism of renal disease and therapeutic drugs in COVID-19
Type Procoagulant mechanism Expression in renal disease Targeted therapeutic agents (97)
IL-6 1. Increased the expression of TF in  

endothelial cells, which promoted  
coagulation by triggering a molecular 
cascade that converts prothrombin to 
thrombin (39).
2. Through JAK-STAT signal Promoting 
podocyte, endothelial cells, platelet, Red 
cells apoptosis and induce the  
expression of PS, binding blood clotting 
factors V and FVIII (40, 97).
3. Facilitating neutrophil aggregation and 
inducing the formation of NETs, providing 
stents for thrombin, platelet aggregation 
and fibrin deposition (41).
4. Reverse regulation of complement 
systems, promoting platelet activation, 
leukocyte recruitment, endothelial cell 
activation and coagulation (42).

1. IgAN: Local deposited high-molecular polymeric IgA1 can promote 
mesangial cells proliferation and secretion of the pro-inflammatory 
cytokine. The associated cytokines (IL-6, IL-17) in serum and urine 
were elevated and correlated with renal pathological change (43).
2. LN: Cytokines excretion are associated with a higher activity of 
LN, injured endothelial cells and podocyte, Increased proteinuria 
and hematuria (43).
3. DKD: Chronic inflammatory process participates in the  
development of microvascular complications of diabetes. DKD 
patients showed an elevated serum level of inflammatory cytokines, 
which positively correlated with the extent of proteinuria (43).
4. AKI: Ischemia, nephrotoxic induced AKI can increase the  
expression of inflammatory factors, the latter can recruit neutrophils 
and activate the oxidative response, aggravating AKI (43).
5. CKD: Cytokines injure kidney not only by aggravating oxidative 
stress, chronic inflammation, and fluid overload, but also by  
initiating its complications, especially the chronic vascular disease 
(43).
6. PNS: Cytokine involve in podocyte apoptosis (40).

Tocilizumab: IL-6R antagonist antibody,
Sarilumab: IL-6R antagonist antibody
Siltuximab: anti-IL-6 antibody

TNF-α Infliximab: a chimeric monoclonal  
anti-TNF antibody Etanercept
Adalimumab: a receptor trap consisting 
of TNF-R2 fused to IgG1 Fc
Certulizumab pegol: a human  
monoclonal anti-TNF antibody
Golimumab: a human monoclonal  
anti-TNF antibody

IL-17 Secukinumab: a human IL-17A  
antagonist
Ixekizumab: a humanized IL-17A  
antagonist
Brodalumab: a human IL-17 receptor A 
antagonist

IL-8 None
IL-10 None
PS, phosphatidylserine; TF, tissue factor; NETs, neutrophil extracellular traps; IgAN, IgA Nephropathy; LN, Lupus Nephritis; DKD, Diabetic Kidney Disease; CKD, Chronic Kidney Dis-
ease; AKI, Acute Kidney Injury; PNS, Primary Nephrotic Syndrome.
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medium to aggravate the progression of dis-
ease and promote coagulation. The autopsy 
report of COVID-19 showed obvious pulmonary 
fibrosis and neutrophil infiltration, and Yu Z et 
al. have been confirmed a high expression of 
extracellular DNA components of neutrophil 
extracellular traps (NETs) in COVID-19 [57]. In- 
travascular NETs is involved in arteriovenous 
thrombosis and accumulation [58]. Its histo- 
ne components can activate platelets through 
Toll-like [59], which may explain the cause of 
thrombocytopenia in patients with COVID-19. 
NE can consume anticoagulant substances 
(anti-thrombin III (ATIII), tissue factor pathway 
inhibitor (TFPI)) [60]. Lupus nephritis, acute re- 
nal injury has confirmed that ETs is involved  
in the formation of renal hypercoagulable state 
[61, 62]. We suspect that ETs accumulation 
may also exist in the renal tissue of patients 
with COVID-19, resulting in local microthrom- 
bosis, while destroying the endothelial barrier, 
damaging podocytes, leading to massive pro-
duction of albuminuria. When it enters the re- 
nal tubular epithelial cells, it can also lead to 
epithelial system disorders. As a stent, ETs  
can promote blood cell aggregation, fibrin de- 
position, strengthen the formation of clots, 
adhere to PS, and activate internal and exter- 
nal coagulation pathways. Although only NETs 
has been confirmed, there are lymphocytopo- 
nia, eosinopenia and macrophage activation  
in COVID-19, included DNA structures in the 
nucleus being released when it is stimulated, 
so there may be more than one kind of cellular 
DNA in COVID-19, and its reticular structure 
may include eosinophils, lymphocytes, macro-
phages and so on [63, 64]. However, these 
need to be further confirmed. Studies have 
shown that NETs ingredients have antifibrinol-
ytic effect [65], so recombinant tissue plasmin-
ogen activator (rt-PA) therapy alone may not be 
sufficient to dissolve clots. NETs can also acti-
vate NF-KB to promote the expression of in- 
flammatory factors by acting on lymphocytes 
through toll-like receptors. These extracellular 
DNA components play an essential role in th- 
rombosis and inflammation of COVID-19, ef- 
fectively prevent the formation of NETs and  
promote the dissolution of its components  
may be used as therapeutic targets for COVID-
19 in the future.

Complement system

Complement system consisted of circulating 
proteins, a part of the innate immune system 
[50]. By activating platelets and endothelial 

cells, increasing the expression of tissue factor 
and VWF contribute to the formation of hyper-
coagulable states, then convert prothrombin 
into thrombin, and finally fibrinogen to fibrin. 
Coagulation cascade activating components in 
turn activate C3 and C5 [66]. There are three 
pathways: classical pathway, lectin pathway 
and alternative pathway. These three pathways 
are all activated in the process of COVID-19 
infection. Complement can directly act on C5R 
receptors on the surface of macrophages and 
neutrophils, promoting the release of damage-
associated molecular patterns (DAMPs) [67] 
and the outbreak of oxidative respiration [68]. 
They can form membrane-attacking complex- 
es and deposit in the kidney, resulting in po- 
docyte damage. Complement-mediated TMA 
leads to renal damage [42]. TMA cause hyper-
tension, while shock caused by DIC lead to low 
blood pressure. COVID-19 patients are mainly 
characterized by hypertension, excluding un- 
derlying disease factors, and most of them are 
concentrated in critically ill patients, while mo- 
st studies believe that DIC is more inclined to 
prethrombotic state. Perhaps the main mecha-
nism of hypercoagulable phenomenon in the 
early stage of patients with COVID-19 is DIC. 
With the development of disease, a large num-
ber of complement system is activated, lead- 
ing to the formation of TMA, and finally promote 
glomerular microthrombosis.

Hypoxia

A retrospective cohort study showed that hy- 
poxemia as an independent factor in COVID-19 
patients was associated with in-hospital mor-
tality [69], and about 2/3 of severe and criti-
cally ill patients showed fatal injuries [70]. Hy- 
poxia cause histanoxia formed by acid meta- 
bolite involvement, vasoconstriction, and then 
ischemia and hypoxia, further leading to stro- 
ke, AKI [6], tissue inflammation, extravasation, 
pulmonary edema and so on. Hypoxia in seve- 
re pneumonia can stimulate thrombosis not 
only by increasing blood viscosity, but also th- 
rough hypoxia-induced transcription factor-de- 
pendent signal pathways to motivate [71]. Hy- 
poxia can cause contraction of renal afferent 
arterioles, insufficient renal perfusion, increa- 
se of acidic substances, shrinkage and defor-
mation of endothelial cells, damage of endo-
thelial barrier function, and transformation to 
procoagulant and pro-inflammatory phenoty- 
pe. Some studies have shown that hypoxia can 
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activate FVII gene to produce procoagulant 
microvesicle [72]. Hypoxia inhibit the expres-
sion of TFPI, up-regulate TF expression [73], 
and activate exogenous coagulation pathway. 
Therefore, multi-site microvascular thrombosis 
caused by hypoxia may be the cause of death  
in patients with respiratory failure, heart fai- 
lure and renal failure in COVID-19.

Treatment

Thrombosis has a key role in the occurrence 
and development of disease. Effective inhibi-
tion of thrombosis is of great significance for 
improving renal function and reducing mortali-
ty. Currently, various drugs aimed at the me- 
chanism of thrombosis have entered the clini-
cal trial stage. By suppressing immunity, regu-
lating receptors, restoring body self-balance, 
combined with mechanical ventilation and CR- 
RT treatment, the mortality rate has not been 
effectively reduced, but significantly ameliorat-
ed using anticoagulants, and the timing, dose 
and drug selection of anticoagulants are still 
controversial. Based on the current treatment, 
this paper puts forward our thoughts on anti-
thrombotic therapy.

Anticoagulant therapy

Huan H et al. showed that PT-act were down-
regulated while fibrinogen degradation product 
(FDP), D-dimer and fibrinogen (FIB) were higher 
than normal controls in patients with COVID-19. 
Compared with mild, severe and critically ill 
patients, AT and PT-act did not change signifi-
cantly. D-dimer and FDP levels increased sig-
nificantly in severe and critically ill patients (D- 
dimer increased about 40 times), while mild 
patients did not change significantly (D-dimer 
increased about 2 times) [74]. Shiyu Y et al. 
found that the level of D-dimer increased less 
than 4 times the normal upper limit (normal < 
0.5 μg/mL). There was no significant difference 
in 28-day mortality between patients used an- 
ticoagulation and those not used anticoagula-
tion. But reached 6 times or more of the nor- 
mal value, the mortality rate of patients treat- 
ed with anticoagulation significantly decreased 
(19.6%) [75]. The Society of Thrombosis and 
Hemostasis put forward the necessity of pro-
phylactic anticoagulant therapy with low mo- 
lecular weight heparin (LMWH) in all patients, 
but it still needs to meet the fact that the le- 
vel of D-dimer is significantly increased (more 

than 4 times), PT slightly prolonged (about 4 s), 
Platelet count < 100×109, FIB < 2.0 g/L [76]. 
For patients with different degrees of COVID-
19, we consider that prophylactic anticoagu- 
lant therapy can be performed according to the 
level of D-dimer. Patients with an increase of 
less than 6 times are mainly concentrated in 
mild cases, the use of anticoagulants such as 
heparin is not considered. Because of their 
thrombotic tendency and the decrease of AT 
level, we can supplement AT or recombinant 
soluble thrombomodulin (rsTM), to increase 
physiological anticoagulant activity. Because 
the anticoagulant effect of AT increases sig- 
nificantly after binding to heparin, the risk of 
bleeding is lower. For severe and critically ill 
patients, their D-dimer levels are significantly 
increased, reaching the standard of preventive 
anticoagulation, due to the decrease of AT and 
the increase of fibrinogen, the therapeutic ef- 
fect of anticoagulants such as heparin is not 
good, so the preventive dose of heparin is not 
enough to control the progress of the disease. 
Combined with the recommendations of British 
hospitals in the course of treatment, LMWH 
can be treated with half of therapeutic dose 
[77, 78]. In severe and critically ill patients wi- 
th kidney disease, especially for dialysis pa- 
tients, LMWH and fondaparin are mainly excr- 
eted through the kidney, long half-life and easy 
to accumulate, binding FXa, which are more 
likely to lead to bleeding tendency and neph- 
rotoxicity, so unfractionated heparin (UFH) can 
be considered [79, 80]. The choice of treat-
ment time can be combined with the increase 
of inflammatory indicators. IL-6 as the trigger 
point of inflammatory response can be detect-
ed on the 4th day of the disease [81], while 
renal injury can be detected on the 7th day 
[12]. Maybe we can start anticoagulant immu-
notherapy on the 4th day of the disease to  
prevent the disease from attacking the kidney 
and effectively inhibit thrombosis. But all the 
above considerations need to be further test- 
ed in randomized controlled trials. 

Antiplatelet therapy

Even with prophylactic anticoagulant therapy, 
thrombosis is still found in 20-30% of critically 
ill COVID-19 patients yet. Guan et al. have 
shown that 36.2% COVID-19 had thrombocy- 
topenia [82], which is mainly caused by plate- 
let activation and involved in thrombosis [20], 
so to inhibit platelet activation antiplatelet th- 
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erapy is also essential, but it is controversial  
at present. It is suggested that long-acting an- 
tiplatelet drugs should usually be discontinued 
in most DIC patients [83]. The current expert 
consensus calls for positive measures to be 
taken for patients with platelet counts < 
1000000/μl and < 50000/μl, or even to stop 
all antiplatelet therapy [84]. However, we be- 
lieve that severe and critically ill patients with 
COVID-19 may be more inclined to TMA charac-
terization. At present, there is no risk of bleed-
ing with double antibody therapy, so antiplate-
let therapy is feasible. ARDS caused by com- 
munity acquired pneumonia, pre-hospital anti-
platelet therapy can effectively reduce the se- 
verity of the disease and mortality. Although 
current studies have shown that there is no 
platelet aggregation in renal capillaries, plate-
let aggregation is mostly formed in arteries. At 
present, there is no study on renal arteries, 
which may also be related to reduce platelet 
consumption. Active antiplatelet therapy [85] 
also helps to reduce the incidence of renal da- 
mage. Studies have demonstrated that aspi- 
rin is effective on prophylaxis of venous throm-
boembolism [86]. Therefore, we think that the 
mild patients can be treated with aspirin, wh- 
en the platelet count is normal or even high, 
early inhibition of its activity may reduce in- 
travascular fibrin and thrombosis, severe and 
critical patients, 100000/μl ≤ platelet count  
< 150000/μl can be treated with ticagrelor, 
platelet count < 100000/μl can suspend treat-
ment. Platelet activation occurs during central 
venous catheterization in patients with severe 
renal disease treated with RRT [87], which lead 
us to think that it is also necessary to use anti-
platelet therapy besides routine anticoagulant 
therapy with LMWH.

Thrombolytic therapy

LMWH plays an important role in the treat- 
ment of COVID-19 patients. However, COVID-19 
patients have hyperfibrinogenemia. Local fibri-
nolysis must be promoted in order to degrade 
pre-existing fibrin in the lungs. LMWH is ineffec-
tive in clearing fibrin clusters deposited in the 
alveolar space. At present, atomizer plasmino-
gen activator can provide a targeted method  
for COVID-19 patients to degrade fibrin and 
improve oxygenation in critically ill patients 
[33]. At the same time, when critical patients 
need to be rescued in time, t-PA can be used as 

a good treatment, but the use of LMWH after 
t-PA treatment may increase the risk of bleed-
ing, so UFH is recommended. Fibrin thrombosis 
is found in some renal capillaries, which may be 
treated effectively by local thrombolysis with 
t-PA. However, systemic or catheter-directed 
thrombolytic therapy also occurs a lot of bleed-
ing events. Perhaps we can increase clot dis-
solution and reduce the occurrence of bleed- 
ing events by enhancing endogenous fibrinolyt-
ic substances such as TFPI, α2-antiplasmin 
[34].

New oral anticoagulants (NOACs)

For inpatients, prophylactic anticoagulation wi- 
th intramuscular injection and intravenous in- 
jection of LMWH is feasible, but for outpati- 
ents, oral preparation is more compliant. War- 
farin and NOACs are commonly used at pres-
ent, but the latter is safer than the former [88]. 
COVID-19 affects the kidney, not only through 
direct damage, but also can stimulate a series 
of inflammation, oxidative stress, fibrosis, le- 
ading to the formation of kidney disease. Ed- 
oxaban, as one of the NOACs, a specific inhibi-
tor of coagulation factor Xa (FXa), can improve 
kidney disease by inhibiting inflammation and 
tissue fibrosis in animal models. It is a multi-
target drug as risk factors for the progression 
of chronic kidney disease (CKD) [89]. However, 
NOACs is mostly excreted through the kidney, 
so the use of these drugs in patients with ne- 
phropathy needs to monitor glomerular filtra-
tion rate (GFR). The NOACs recommendations 
of different guidelines for CKD patients and 
patients with VTE events [15, 90] are shown in 
Table 2, which can guide the use of drugs for 
COVID-19 complicated with nephropathy. Since 
60% of the patients developed thrombosis 
within 90 days after discharge [78], it is still 
necessary to continue anticoagulant therapy 
after discharge. NOACs does not require rou-
tine blood clotting tests and has fewer drug-
food interaction advantages [91]. It may be 
used for maintenance treatment of COVID-19 
discharged patients. Studies on deep vein th- 
rombosis have found that more than 60% of 
VTE occurs after discharge. Most VTE events 
(about 80%) occur within 6 weeks after dis-
charge, but post-hospital thromboprophylaxis 
is given to less than 4% of hospitalized pati- 
ents [92, 93]. Therefore, patients with COVID-
19 need long-term oral anticoagulants within  
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Table 2. Recommendation of NOACs for COVID-19 patients with different degrees of Nephropathy

Mechanism
Dabigatran Apixaban Rivaroxaban Edoxaban

Direct thrombin inhibitor Direct inhibitor of activated factor X
CrCl 30-59 PA for 5 days then 150 mg 

bd or 110 mg bid
10 mg bid for 7 days then 5 

mg bid
15 mg bid for 3 weeks then 20 mg 

po
PA for 5 days then 30 

mg qd

CrCl 15-29 Not recommended 10 mg bid for 7 days then 5 
mg bid

15 mg bid for 3 weeks then 20 mg 
po

PA for 5 days then 30 
mg qd

CrCl < 15 Not recommended 5 mg bid (FDA) Limited clinicial data-15 mg qd (FDA) Not recommended

Dialysis Not recommended 5 mg bid (FDA) Limited clinicial data-15 mg qd (FDA) Not recommended
NOACs, New oral anticoagulant; CrCl, creatinine clearance; PA, Parenteral anticoagulation; bid, twice a day; FDA, Food and Drug Administration; po, per os; qd, once a 
day.

at least 2 months and are reviewed regularly 
every month to prevent disease recurrence and 
the formation of new complications. In addition 
to the direct inhibition of coagulation factors, 
effective targeted therapy for the causes of 
thrombosis is also helpful to reduce throm- 
bosis.

Other possible therapeutic targets to throm-
bosis

Renal capillary thrombosis in COVID-19 inclu- 
des direct action of virus, impaired endotheli- 
al function, cytokine storm, extracellular traps 
and hypoxia. According to the above mecha-
nisms, there are many effective targeted thera-
pies, containing antiviral agents [94-96], tar-
geted receptor therapy [34, 95], anti-cytokine 
antibodies [97] (Table 1), NETs antagonists  
and their content inhibitors [35], complement 
inhibitors [98, 99] etc (Table 3). The current 
clinical trial of drugs can effectively reduce 
symptoms, reduce mortality, may be related  
to the inhibition of thrombosis during the tre- 
atment. At present, it is been suggested, in 
most viewpoints, continuous immunosuppres-
sive therapy to manage patients, whether there 
is basic kidney disease with COVID-19, or renal 
disease secondary to COVID-19 [100, 101].  
The dose can be reduced appropriately accord-
ing to the illness. Perhaps immune-mediated 
thrombosis is the main reason of renal injury, 
which effective inhibition of inflammation and 
coagulation is conducive to delay the progres-
sion of the disease. 

As described above, the mechanism of renal 
capillary thrombosis and the possible mecha-
nism of COVID-19-related renal capillary throm-
bosis, from virus invasion, immunothrombos- 
is, to the persistence of thromboinflammati- 
on, and finally multiple organ dysfunction, each 
stage plays an important role in the progres-

sion of the disease. It can reduce the activa- 
tion of immune cells by inhibiting virus replica-
tion, such as hydroxychloroquine and antiviral 
agents [94-96]; block the binding of virus to 
body receptors, such as ACEI, ARB, but there is 
some controversy about them, so it is propos- 
ed that the use of recombinant human ACE2 
(rhACE2) can increase the protective effect of 
Mas receptor and exert the effect of anti-in- 
flammation and anticoagulation [102, 103]. In- 
hibition the expression of E- and P-selectin on 
endothelial cell reduce the aggregation of leu-
kocytes and platelets [34]. Application of cor-
responding antibodies is necessary to prevent 
the formation of cytokine storm [97]. ETs for- 
med by immune cells, mainly NETs, is an im- 
portant bridge between thrombus and inflam-
mation. Blocking target by directly degrading 
ETs or the process of its contents may be 
important [35]. The activation of complement 
system has been proved to play an essential 
role in COVID-19, especially as an important 
mediator of kidney disease. It is believed that 
the use of monoclonal antibodies may alleviate 
the disease [98, 99]. In addition to the above 
targets, Novel antithrombotic strategies are 
proposed, such as anti-XII, anti-XI, play a cas-
cade amplification role in the coagulation pro-
cess, promote thrombin generation, connect 
the slow peptide system with the coagulation 
process, and inhibit the target, which plays an 
important role in reducing inflammation and 
coagulation [34]. We believe that PS also plays 
an important role in the process of thrombos- 
is. At present, a large number of studies have 
shown that particles and vesicles are highly 
produced in COVID-19 [104]. Based on our pre-
vious studies [28, 29], we consider that PS  
and TF expressed on the surface of particles 
and vesicles may be important factors of mul-
tiple organ thrombosis, so giving anti-PS, and 
anti-TF therapy may become one of the impor-
tant treatments in future research.
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Table 3. Treatment of incentives to COVID-19 associated renal capillary thrombosis
Categories Drugs Mechanism Refs
Antivirals CQ, HCQ Effect cell membrane pH necessary for viral fusion

Interfere with glycosylation of viral proteins
Inhibit phospholipase activity
Stabilize lysosomal membranes
Block the production of pro-inflammatory cytokines
Impair complement-dependent antigen-antibody reactions
Decrease of the APL antibody titers

[94-96]

Emtricitabine-tenofovir (Truvada) The active triphosphate form of this tenofovir diphosphate inhibits activity for RdRp of virus

Targeting receptors ACEI, ARB, rhACE2 Upregulate ACE2 expression. ACE2 is a homologue of ACE, and functions as a negative regulator of the renin-
angiotensin system

[102, 103]

Endothelial related targets GMI-1271
Selk2

An E-selectin antagonist attenuates thrombosis and inflammatory markers without increasing bleeding
A humanized monoclonal antibody binds PSGL-1 and blocks its ability to interact with selectins and chemo-
kines

[34]

Cytokine inhibitors Table 1 [97]

NETs inhibitors Sivelestat, Lonodelestat Alvelestat, CHF6333 NE inhibitors, NE activates proteins essential to NET formation [35]

PAD4 inhibitor PAD4 mediates histone citrullination

Dornase alfa A recombinant DNase I is approved to dissolve NETs and improve symptoms

Anakinra Canakinumab and rilonacept For the NET-IL-1β loop could be antagonized with approved drugs against IL-1β

Complement pathway inhibitors eculizumab Anti-C5 antibody, preventing the cleavage of C5 into C5a and C5b, which are the central converging point of 
all pathways of complement activation

[98, 99]

NETs, neutrophil extracellular traps; CQ, chloroquine; HCQ, hydroxychloroquine; ACEI, Angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blockers; rhACE2, recombinant human angiotensin-converting enzyme 2; APL, anti-
phospholipid; RdRp, RNA-dependent RNA polymerase.
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Conclusion and future direction

In this article, we explore the possible mecha-
nism and therapeutic targets of renal capillary 
thrombosis caused by COVID-19. We consider 
that renal involvement and high mortality are 
inseparable with thrombus. So effective anti-
thrombotic therapy may reduce the occurrence 
and development of renal disease. We put for-
ward possible therapeutic targets for throm- 
bosis in the future. At the same time, the cur-
rent clinical treatment methods also show th- 
at these treatments are indeed effective, but 
there are few studies on the effects of blood 
coagulation in COVID-19. If the later random-
ized controlled trials can be combined with the 
changes of blood coagulation indexes before 
and after drug treatment, it is of great impor-
tance to support our conclusion. The current 
antithrombotic therapy lacks the choice of dis-
ease stratification and treatment time. This pa- 
per describes how to choose anticoagulants  
for mild, severe and critically ill patients, as we- 
ll as anticoagulant intervention at the time of 
onset, and makes a corresponding supplement 
to antiplatelet and NOACs therapy, which mak- 
es up for some shortcomings of current an- 
ticoagulation therapy, but these need to be fur-
ther confirmed by future clinical trials.
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