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Abstract: Acute Lymphoblastic Leukemia (ALL) is the most common type of cancer in children. Polymorphisms 
that alter the normal function of the microRNAs involved in the development of ALL have been widely investigated, 
although published data on these polymorphisms in admixed populations are scarce. We investigated the role of 
10 polymorphisms in the microRNA and protein-coding genes of the microRNA synthesis complex in susceptibility 
to pediatric B-cell ALL. The study includes 100 pediatric ALL patients and 180 healthy individuals. The statistical 
analyses were run in SPSS v.25.0. In the case of the microRNA synthesizing genes, a significant pattern was found 
in only gene, that is, the rs3805500 polymorphism of DROSHA, in which the homozygous mutant (AA) genotype was 
associated with a threefold increase in the risk of developing ALL when compared to other genotypes (P=0.004, 
OR=2.913, CI=1.415-5.998). In the microRNA coding genes, the homozygous mutant rs3746444 genotype of the 
MIR499A gene was associated with a 17-fold increase in the risk of development of ALL (P<0.001, OR=17.797, 
CI=5.55-57.016). A protective effect against the development of ALL was also observed in the carriers of the wild 
homozygous rs2505901 genotype in the MIR938 gene. Our findings highlight the potential of these polymorphisms 
in the genes involving in the coding of microRNAs for the evaluation of the risk of contracting ALL in the population 
of the Brazilian Amazon region. These findings contribute to a more complete understanding of the complex etiology 
of ALL.
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Introduction

Acute Lymphoblastic Leukemia (ALL) is the 
most common type of cancer in children and 
adolescents of up to 19 years of age, repre-
senting 28% of all malignancies in this age 
group and 75% of all cases of leukemia [1-3]. 
The etiology of ALL is considered to be mul- 
tifactorial, involving both environmental and 
genetic factors, which have been investigated 
extensively. These factors include exposure to 

carcinogens, as well as chromosomal and 
molecular alterations [4, 5]. In particular, many 
single nucleotide polymorphisms (SNPs) in key 
genes of the regulatory pathways have been 
ascribed a fundamental role in the develop-
ment of ALL [6].

The investigation of the SNPs found in the 
microRNA genes has emerged as a promising 
new field of genomic research. The principal 
function of these molecules is to regulate gene 
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expression via post-transcriptional silencing, 
the cleaving of messenger RNAs (mRNA) or 
inhibiting the initiation of translation through 
base pairing between the microRNA and its 
mRNA target [7]. The presence of SNPs in 
microRNA genes or the protein-coding genes 
involved in the synthesis of the microRNAs  
may affect their correct functioning, resulting  
in impacts on gene regulation processes [8]. 
Despite the important regulatory potential of 
these polymorphisms, few studies have fo- 
cused on the influence of the SNPs located in 
non-coding genomic regions. In addition, evi-
dence on the occurrence of these polymor-
phisms in populations with high levels of mis- 
cegenation, such as that of the Brazilian 
Amazon region, is particularly scarce. Given 
this, the present study investigated the role of 
10 polymorphisms of the microRNA and 
microRNA synthesis genes in the susceptibility 
of pediatric patients from the Brazilian Amazon 
region to B-cell ALL. 

Material and methods 

Patients and controls 

The case group of the present study included 
100 patients diagnosed with B-cell ALL by 
immunophenotyping and/or molecular analy-
sis. All these individuals were in treatment  
at the Otávio Lobo Hospital in Belém, a refer-
ence center for the treatment of pediatric can-
cer in the northern region of Brazil. The pa- 
tients included in the study were between 1 
and 18 years old. Recurrent patients or those 
with comorbidities were not included in the 
group. The control group consisted of 180  
individuals with no diagnosis for B-cell ALL or 
any other type of cancer. None of these indi-
viduals were related to any of the patients in 
the case group, and they were all over the peak 
risk age for the development of ALL. 

Ethical aspects

This study was approved by the Research  
Ethics Committee of the Research Center of 
Oncology of the Federal University of Pará  
(CAAE number 11433019.5.0000.5634). All 
participants (or their legal guardians) signed a 
term of informed consent authorizing the col-
lection of samples and data.

Selection of the study polymorphisms 

The SNPs selected for the present study were 
chosen due to their known association with 
susceptibility to ALL and different types of  
cancer, based on the published data. The  
references of the journal articles used for the 
selection of the polymorphisms are listed in  
the Table S1 [38-48]. A total of 10 polymor-
phisms were selected, seven in microRNA 
genes and three in the protein-coding genes 
essential to the synthesis of microRNAs: rs- 
636832 (AGO1), rs10035440 e rs3805500 
(DROSHA), rs213210 and rs107822 (MIR- 
219-1), rs2910164 (MIR146a), rs12894467 
(MIR300), rs3746444 (MIR499a), rs4919510 
(MIR608), and rs2505901 (MIR938).

Extraction and quantification of the DNA

The DNA was extracted from peripheral blood 
using a commercial DNA extraction kit (Bio- 
pur Mini Spin Plus-250 extraction kit, Biopur, 
Brazil). The concentration of the genetic mate-
rial was quantified in a NanoDrop 1000 spec-
trophotometer (Scientific Term NanoDrop 
1000; NanoDrop Technologies Wilmington, 
DE).

Genotyping of polymorphisms

The 10 polymorphisms were genotyped by  
allelic discrimination using the TaqMan Open- 
Array Genotyping technology with a set of 32 
customized assays, which were run in a 
QuantStudio™ 12K Flex Real-Time PCR sy- 
stem (Applied BiosystEM, Life Technologies, 
Carlsbad, USA), according to the manufactur-
er’s protocol. This method is based on real- 
time Polymerase Chain Reaction (qPCR). The 
quality of the readings of the genotypes and 
other data were analyzed in the TaqMan 
Genotyper software.

Quality control 

To ensure an adequate level of accuracy, poly-
morphisms were only included in the present 
study if they satisfied three criteria: (i) MAF≥ 
1%; (ii) genotyping rate ≥80%, and (iii) were in 
Hardy-Weinberg (HWE). The HWE was per-
formed using the Arlequin software (v.3.5.1.2). 
The significance of the HWE test was adjust- 
ed for multiple comparisons by the Bonferroni 
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method (P≤0.001), and the HWE values are 
shown in the Table S2. As all 10 of the polymor-
phisms selected for the present study satisfied 
these criteria, they were all included in the 
association analyses (Table S2). 

Fusion analysis by extraction of the RNA and 
the reverse transcriptase-polymerase chain 
reaction (RT-PCR)

For the cytogenetic analysis of the BCR-ABL, 
ETV6-RUNX1, MLL-AF4, SIL-TAL and E2A-PBX1 
fusions, blood samples were collected from  
84 patients via venipuncture and stored in 
EDTA. Ficoll Histopaque® (Sigma-Aldrich, USA) 
was added to the samples for the separation  
of the lymphocytes, following the manufactur-
er’s instructions. The ARNsy MiniKit (Qiagen, 
USA) and High Capacity cDNA Reverse 
Transcription kits (Applied Biosystems, USA) 
were used to extract RNA and convert cDNA, 
respectively, both according to the manufa- 
cturers’ protocols. A multiplex RT-PCR reaction 
was run using The Master Mix kit (Promega, 

Chicago, IL, USA), considering a P≤0.05 signifi-
cance level.

Results

Significant differences were found between  
the case (ALL) and control group ages, sex 
ratio, and genomic ancestry (Table 2). The 
mean age of the case group was significantly 
lower than that of the control group (P<0.001) 
and the sex ratios also varied significantly 
between groups (P<0.001), with a predomi-
nance of males in the case group and of 
females in the control group.

The genomic makeup of the case group was 
dominated by European ancestry (43%), fol-
lowed by the Amerindian (36%) and African 
(20%) components. While the control group 
presented a similar makeup (European-45%, 
Amerindian-30%, African-24%), its Amerindian 
ancestry was significantly lower (P=0.004)  
than that of the case group. Given the observ- 
ed variation, both sex and Amerindian ancestry 

Table 1. Primers used for RT-PCR in the chromosomal 
fusion analysis
Cromossomic Fusion Genes Primer (5’-3’)
t(1;19)(q23;p13) E2A CTACTCCCCGGATCACTCAA

PBX1 AGGCTTCATTCTGTGGCAGT
t(4;11)(q21;q23) MLL CGCCCAAGTATCCCTGTAAA

AF4 GAGCATGGATGACGTTCCTT
t(9;22)(q34;q11) BCR TCGCAGAACTCGCAACAGT

ABL ACACCATTCCCCATTGTGAT
t(12;21)(p13;q22) TEL TCTCTCATCGGGAAGACCTG

AML1 TGCGGTAGCATTTCTCAGC
del(1)(p32;p32) SIL TCCTACCCTGCAAACAGACC

TAL1 AGGCGGAGGATCTCATTCTT

Table 2. Demographic parameters for the case (pa-
tients with B-cell ALL) and control groups analyzed in 
the present study
Variable Case (100) Control (180) p-value
Sex (M/F) 60/40 53/127 <0.001a

Age* 5.53 ± 3.991 65.97 ± 16.021 <0.001b

Genetic ancestry*

    European 0.429 ± 0.133 0.454 ± 0.170 0.189c

    African 0.203 ± 0.089 0.241 ± 0.138 0.213c

    Amerindian 0.361 ± 0.154 0.304 ± 0.149 0.004c

aChi-square, bStudenta0 t, cMann-Whitney9trU. *Mean ± eStandard 
Deviation.

USA) with the primers designed specifi-
cally for the five fusions mentioned above, 
also following the manufacturer’s in- 
structions. The primers used for RT-PCR 
are listed in Table 1.

Analysis of genomic ancestry

The genomic ancestry of the partici- 
pants was analyzed following Santos et 
al. (2010) and Ramos et al. (2016), us- 
ing a set of 61 Ancestry Informative 
Markers (AIMs). The individual and glo- 
bal proportions of European, Amerindian, 
and African genetic ancestry were esti-
mated using STRUCTURE v.2.3.4 [9-11].

Statistical analyses

The Chi-square test was applied for the 
pairwise comparisons of the categorical 
variables between the case and control 
groups, while the quantitative variables 
were compared using Student’s t. The 
multivariate analyses considered the  
sex of the participants and Amerindian 
ancestry as confounding variables. The 
Mann-Whitney test was used to com- 
pare the estimates of genetic ancestry 
between the groups. All statistical analy-
ses were run in SPSS v.25.0 (SPSS, 
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were controlled for in the analyses of the  
potential association between the polymor-
phisms and susceptibility to ALL.

The distribution of the B-cell ALL subtypes, 
based on the occurrence of the chromoso- 
mal fusions analyzed here, is shown in Fi- 
gure 1. The most frequent fusions were E2A-
PBX1 (21.42%) and BCR-ABL (14.30%), fol-
lowed by ETV6-RUNX1 (7.14%), MLL-AF4 
(2.38%), and SIL-TAL (1.19%).

Three SNPs were investigated further in the 
case of the genes involved in the synthesis of 
microRNAs, and a significant pattern was 
observed in the case of the recessive model 
(AA vs. GG + GA) of the rs3805500 variant  
of the DROSHA gene (Table 3). The mutant 
homozygote (AA) genotype of this gene was 
associated with a threefold increase in the  
risk of developing ALL (P=0.004, OR=2.913, 
CI=1.415-5.998).

Seven variants of the microRNA genes were 
analyzed, of which, two were related signifi- 

cantly to the susceptibility of the carrier to ALL 
(Table 3)-MIR499A (rs3746444) and MIR938 
(rs2505901). The mutant homozygote rs37- 
46444 (GG) genotype was associated with a 
17-fold increase in the risk of developing ALL 
(P<0.001, OR=17.797, CI=5.55-57.016). By 
contrast, the wild homozygous rs2505901  
(CC) genotype was associated with a lower  
risk for the development of ALL, apparently  
conferring a protective effect (P=0.013, 
OR=0.359, CI=0.160-0.805).

Discussion

The population of Brazil is one of the world’s 
most genetically heterogeneous, and the pedi-
atric ALL patients analyzed in the present  
study had a high level of admixture (42% 
European, 36% Amerindian, and 20% African). 
This is a very distinct genetic background in 
comparison with that of the other ethnic  
populations in which the association between 
SNPs in the microRNA genes have typically 
been evaluated [12].

We identified three variants with the apparent 
potential to influence the risk of developing  
ALL - the rs3805500 variant of the DROSHA 
gene, rs3746444 (MIR499A gene), and rs25- 
0590 (MIR938 gene). The differential expres-
sion of these genes and their apparent role in 
the development of cancer has been demon-
strated in a number of previous studies [13-
15]. However, a number of both internal and 
external environmental factors may affect the 
levels of gene expression, which impedes the 
full understanding of the role of these variants 
in the susceptibility of the individual to ALL, 
which reinforces the importance of evaluating 
germline polymorphisms [16, 17].  

The DROSHA gene is a key component of the 
synthesis of microRNAs. This gene encodes  
a type III RNase, which is essential for the  
maturation of pri-miRNAs and pre-miRNAs  
[18]. We found that the homozygous mutant 
(AA) rs3805500 genotype is associated with a 
threefold increase of the development of  
ALL. This is the first study to report the role  
of this polymorphism as a risk factor of ALL, 
although the rs3805500 mutant has already 
been identified as a factor in the susceptibility 
of individuals to other types of leukemia [19, 
20]. A GWAS study [19] found that the rs38- 
05500 mutant A allele, in a haplotype with two 

Figure 1. Distribution of the B-cell ALL subtypes in 
the study patients of the case group. 
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Table 3. Distribution of the alleles and genotypes of the polymorphisms investigated in the B-cell ALL 
patients, in comparison with control individuals
Genotype ID Case (%) Control (%) p Model OR (95% CI)
AGO1_rs636832 75 150
    AA 8 (10.7) 14 (9.3)
    AG 34 (45.3) 67 (44.7) AA + AG vs. GG
    GG 33 (44) 69 (46) 0.163 Recessive 1.687 (0.809-3.520)
    Allele A 0.333 0.316
    Allele G 0.666 0.683
DROSHA_rs10035440 80 148
    TT 60 (75) 98 (66.2)
    TC 17 (21.3) 44 (29.7) TT + TC vs. CC
    CC 3 (3.8) 6 (4.1) 0.434 Recessive 2.082 (0.331-13.085)
    Allele T 0.856 0.810
    Allele C 0.143 0.189
DROSHA_rs3805500 74 159
    GG 11 (14.9) 50 (31.4)
    GA 26 (35.1) 51 (32.1) GG + GA vs. AA
    AA 37 (50) 58 (36.5) 0.004 Recessive 2.913 (1.415-5.998)
    Allele G 0.324 0.474
    Allele A 0.675 0.525
MIR219-1_rs213210 82 166 AA vs. AG + GG
    AA 64 (78) 134 (80.7) 0.813 Dominant 0.908 (0.409-2.015)
    AG 16 (19.5) 19 (11.4)
    GG 2 (2.4) 13 (7.8)
    Allele A 0.878 0.864
    Allele G 0.121 0.135
MIR219-1_rs107822 73 152 CC vs. CT + TT
    CC 36 (49.3) 85 (55.9) 0.831 Dominant 0.929 (0.471-1.832)
    CT 30 (41.1) 53 (34.9)
    TT 7 (9.6) 14 (9.2)
    Allele C 0.698 0.733
    Allele T 0.301 0.266
MIR146A_rs2910164 81 160 GG vs. GC + CC
    GG 47 (58) 68 (42.5) 0.091 Dominant 1.777 (0.912-3.462)
    GC 24 (29.6) 74 (46.3)
    CC 10 (12.3) 18 (11.3)
    Allele G 0.728 0.656
    Allele C 0.271 0.343
MIR300_rs12894467 76 175 TT vs. TC + CC
    TT 22 (28.9) 75 (42.9) 0.062 Dominant 0.513 (0.254-1.035)
    TC 42 (55.3) 80 (45.7)
    CC 12 (15.8) 20 (11.4)
    Allele T 0.565 0.657
    Allele C 0.474 0.342
MIR499_rs3746444 75 167
    AA 5 (6.7) 126 (75.4)
    AG 43 (57.3) 36 (21.6) AA + AG vs. GG
    GG 27 (36) 5 (3.0) <0.001 Recessive 17.797 (5.55-57.016)
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other polymorphisms, was associated with  
an increased risk of Chronic Lymphocytic 
Leukemia (CLL), which is consistent with our 
finding that the rs3805500 mutant A allele 
contributes to an increased susceptibility to 
leukemia.

Polymorphisms in the DROSHA gene may  
influence shared pathways in the develop- 
ment of both ALL and CLL [19]. The rs380- 
5500 mutant is also in linkage disequilibrium 
with the rs640831 variant of the same gene, 
which is related to a reduction in the expres-
sion of the DROSHA mRNA, and an alteration  
in the maturation of pri-miRNAs and pre-miR-
NAs, a condition linked to the progression of a 
number of different types of cancer [21-25].

Another variant analyzed here is the rs3746- 
444, which is located in the seed region of the 
MIR-499a-3p gene, and may impede the 
microRNA from binding to its targets [12, 26]. 
Our results indicate an association between 
the homozygous mutant genotype (GG) and a 
17-fold increase in the risk of developing ALL. 
Other studies have reported an association 
between the rs3746444 polymorphism and 
susceptibility to a number of malignant neo- 
plasia, although these findings have been con-
troversial [27-30]. The homozygous mutant 
(GG) rs3746444 genotype has been related to 
the risk of gastric and lung cancer in Asian  
populations, but not in Caucasians [29, 30]. 
The contradictory nature of these results is 
probably due to the distinct genetic back-
grounds of the different types of cancer and 

interethnic differences between the Asian  
and Caucasian populations [12, 29, 30]. In the 
ALL, few studies have investigated the role  
of rs3746444 polymorphism in its develop-
ment, which were carried out in homogeneous 
Caucasian populations [12, 26]. Hasani et al. 
(2014) showed no association of this variant 
with the risk of ALL [12], while Gutierrez- 
Camino (2014), described a protective effect  
of the G allele on the risk of ALL [26]. Further 
studies are needed to better elucidate the  
role of this variant in the ALL development. 
Furthermore, many findings indicate the poten-
tial influence of ethnicity in genetic associa-
tions, and reinforce the need for the analysis  
of ancestry to guarantee more conclusive 
studies.

The MIR938 gene is responsible for the re- 
gulatory pathways of the genes related to cell 
survival and apoptosis [31]. Variants of the  
SNP type present in the MIR938 gene have 
been associated with modifications in its bio-
genesis and stability [32, 33]. We investigat- 
ed the rs2505901 variant, which corresponds 
to a C>T nucleotide swap in the intronic region 
of the MIR938 gene, and found that the wild 
homozygous (CC) genotype of this variant is 
associated with a 33% decrease in the risk of 
development of ALL. A decrease in the risk  
of gastric cancer was also observed in wild 
homozygous genotype carriers [34], which  
corroborates the protective effect of the 
rs2505901 variant. It is important to note here 
that only a few studies have investigated the 
role of this polymorphism in the development of 

    Allele A 0.353 0.862
    Allele G 0.646 0.137
MIR608_rs4919510 81 161 GG vs. GC + CC
    GG 5 (6.2) 18 (11.2) 0.325 Dominant 0.566 (0.182-1.760)
    GC 29 (35.8) 58 (36)
    CC 47 (58) 85 (52.8)
    Allele G 0.240 0.291
    Allele C 0.759 0.708
MIR938_rs2505901 76 150 CC vs. CT + TT
    CC 15 (19.7) 53 (35.3) 0.013 Dominant 0.359 (0.160-0.805)
    CT 38 (50) 46 (37.7)
    TT 23 (30.3) 51 (34)
    Allele C 0.447 0.506
    Allele T 0.552 0.493
OR: Odds Ratio; CI: Confidence interval. The p values refer to the logistic regression adjusted for sex and Amerindian ancestry.
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cancer, in general, and that the present study is 
the first to evaluate its role in ALL. 

Chromosome abnormalities have an impor- 
tant role in the predisposition, prognosis, and 
treatment of ALL [35]. In the present study, a 
majority (53.57%) of the patients did not pres-
ent any of the chromosomal translocations 
investigated. Even so, 45.24% of the trans- 
locations observed were of high or intermedi-
ate risk (BCR-ABL, E2A-PBX1, ETV6-RUNX1, 
MLL-AF4) [36, 37].

Conclusions

Overall, then, the present study provides  
convincing evidence of the influence of the 
rs3805500 (DROSHA), rs3746444 (MIR499), 
and rs2505901 (MIR938) variants on the  
susceptibility of the Brazilian Amazon popula-
tion to ALL. From a methodological viewpoint, 
the use of SNPs as biomarkers is more practi-
cable than the analysis of mRNA expression, 
given that germline variants can be investigat-
ed through the analysis of peripheral blood, 
requiring less costly laboratory procedures.  
Our findings are fundamental to the better 
understanding of the susceptibility of the  
population of the Brazilian Amazon region to 
ALL. This is an important advance, given the 
unique, ethnically diverse background of this 
population, which is quite distinct from the 
more homogeneous populations, which have 
been the focus of most previous ALL research.
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Table S1. References used for selection of 
the investigated genes and polymorphisms
GENE Variant ID References
AGO1 rs636832 [38-40]
DROSHA rs10035440 [20, 41]

rs3805500 [19-21]
MIR219-1 rs107822 [42, 43]

rs213210 [31, 43]
MIR146a rs2910164 [12, 44]
MIR300 rs12894467 [45, 46]
MIR499a rs3746444 [12, 26]
MIR608 rs4919510 [47, 48]
MIR938 rs2505901 [31, 34]

Table S2. Characterization of the polymorphisms analyzed in the present study and their quality con-
trol parameters

GENE rs ALLELE FUNCTION
QUALITY CONTROL

MAF Genotyping 
rate HWE* Status 

AGO1 rs636832 A>G Intron variant 36% 80% 0.33887 Included
DROSHA rs10035440 T>C Intron variant 15% 81% 1.0000 Included
DROSHA rs3805500 G>A Intron variant 49% 83% 0.20689 Included
MIR146a rs2910164 G>C Mature miRNA variant 29% 86% 0.12694 Included
MIR219-1 rs213210 A>G Regulatory region variant 17% 89% 0.02196 Included
MIR219-1 rs107822 C>T TF binding site 37% 80% 0.07143 Included
MIR300 rs12894467 T>C Non-coding transcript exon variant 39% 90% 0.00204 Included
MIR499a rs3746444 A>G Mature miRNA variant 18% 86% 0.11173 Included
MIR608 rs4919510 G>C Mature miRNA variant 36% 86% 1.0000 Included
PRE-MIR-938 rs2505901 C>T Intron variant 40% 81% 0.00859 Included
*Significance adjusted for multiple comparisons by the Bonferroni correction (P≤0.001).


