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Abstract: In the heart, Ca2+ participates in electrical activity and myocardial contraction, which is closely related to 
the generation of action potential and excitation contraction coupling (ECC) and plays an important role in various 
signal cascades and regulates different physiological processes. In the Ca2+ related physiological activities, CaMKII 
is a key downstream regulator, involving autophosphorylation and post-translational modification, and plays an 
important role in the excitation contraction coupling and relaxation events of cardiomyocytes. This paper reviews 
the relationship between CaMKII and various substances in the pathological process of myocardial apoptosis and 
necrosis, myocardial hypertrophy and arrhythmia, and what roles it plays in the development of disease in complex 
networks. This paper also introduces the drugs targeting at CaMKII to treat heart disease.
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Introduction

Calcium (Ca2+), one of the most common signal 
transducers, plays many important regulatory 
roles in cardiomyocytes [1]. It can mediate  
various biological functions, such as muscle 
contraction, extracellular swallowing, neuronal 
activity and triggering programmed cell death 
[2]. In the initial stage of action potential, Ca2+ 
which flows into L-type Ca2+ channel through 
myoplasma voltage gating triggers sarcoplas-
mic reticulum (SR) to release a large amount of 
Ca2+. This process of myocardial contraction 
and blood drawing driven by Ca2+ is called exci-
tation contraction coupling (ECC) [3]. The trans-
port mechanism of Ca2+ in cardiomyocytes in- 
cludes Ca2+ cycling between cytoplasm and ex- 
tracellular space and Ca2+ cycling between cy- 
toplasm and calcium pool, especially SR. In the 
place where the distance between T-tubules 
and SR is very close, dyad is very important for 
intracellular Ca2+ cycle [4], Dyad is regarded as 
a signal link related to cardiac contraction, and 
it is composed of L-type Ca2+ channel clusters 
on SR, which are closely distributed to form 

RyRs clusters. Cardiac dyad may help regulate 
the release of Ca2+ in SR during systole [5].

In the initial depolarization phase of AP, the 
probability of LCC opening increases, which 
allows Ca2+ to enter dyad. SR is the main intra-
cellular Ca2+ storage cell [6]. Ca2+ release in SR 
is mediated by RyR2 which is a special Ca2+ 
release channel [7]. With the increase of Ca2+ 
concentration in dyad, Ca2+ binds to RyR2s, 
which increase the probability of receptor open-
ing. When calcium triggers the release of calci-
um, the large opening of RyR2 receptor results 
in Ca2+ releasing from JSR. Ca2+ is rapidly accu-
mulated in dyad and diffuses to cytoplasm. 
Ca2+ in the cytosol binds to and activates cardi-
ac troponin C (TNC), and then initiates myofila-
ment contraction [8]. The Na+-Ca2+ exchanger 
(NCX) excretes one Ca2+ every three Na+, which 
is the main way to excrete Ca2+ in cardiomyo-
cytes (Figure 1) [9]. During the diastolic phase, 
Ca2+ enters SR from SERCA2a, or enters extra-
cellular space from NCX, which causes myocar-
dial relaxation. In addition, Ca2+ released from 
SR enters the cytoplasm rapidly, and then en- 
ters SR or extrudes out of the cells, which 
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Figure 1. Ca2+ and CaMKII in cardiomyocytes. Ca2+ can enter cardiomyocytes through LTCC, TRPC and other chan-
nels, β-AR can also regulate the influx of Ca2+. When Ca2+ increases to a certain extent in dyads, it will combine with 
RyR2 and cause CICR. When a large amount of Ca2+ influx into the cytoplasm, it can promote the contraction of 
cardiomyocytes. Ca2+ can be transported out of cells by NCX. The increase of Ca2+ concentration can activate CaM-
KII, which can phosphorylate IP3R and increase the opening of RyR, and also phosphorylate PLN and promote the 
absorption of SR Ca2+. DREAM, a downstream factor stimulated by CaMKII, inhibited the opening of LTCC by negative 
feedback. Meanwhile, under the activation of CaMKII, MCU would be phosphorylated to promote Ca2+ inflow into 
mitochondria, and a large increase in mitochondrial Ca2+ concentration would cause the opening of MPTP channels 
and trigger cell apoptosis. 

causes a transient wave of Ca2+ throughout the 
cardiomyocytes. 

The activity of Ca2+ channel and exchanger 
involving EC coupling is regulated by various 
mechanisms and signal pathways. IP3 (inositol 
1, 4, 5-trisphosphate) is the substrate pro-
duced by phospholipase C (PLC), hydrolysis of 
ptdlns (4, 5) P2 (phosphatidylinositol-4, 5-bis- 
phosphate), which acts as the second messen-
ger to regulate Ca2+ release by stimulating IP3 
receptors [10]. The increase of paracrine or 
autocrine of Endothelin-1 (ET-1) can promote 
the production of IP [11]. Protein kinase A (PKA) 
can phosphorylate IP3R (Inositol trisphosphate 
receptor) and enhance its Ca2+ release at a 

lower concentration of IP3 [12]. TRP channel 
plays an important role in regulating cell con-
traction, proliferation and death. The integrat-
ed stimulation is transmitted to the down-
stream signal pathway through Ca2+. In cardio-
myocytes, especially TRPC channel, it is an 
important regulatory factor of Ca2+ cycle, which 
is related to calcineurin and other effectors to 
regulate and control the physiological and pa- 
thological processes of the heart [13, 14].  
PKA and CaMKII play an important role in the 
regulation of cardiac Ca2+ circulation. Activated 
β-adrenergic receptor (β-AR) stimulates aden-y 
late cyclase (AC) to activate PKA and regula- 
te calcium uptake in SR. CaMKII has a similar 
function with PKA, and is also activated by sym-
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Figure 2. Linear diagram of a prototypical CaMKII subunit. 

pathetic nerve to play a role. CaMKII can also 
phosphorylate Ca2+ and Na+ channels, change 
ICa and lNa gating, in order to prolong APD time 
and improve the possibility of early depolariza-
tion. CaMKII has a more important and long-
term impact on Ca2+ cycle [15]. 

Ca2+/calmodulin dependent protein kinase II

CaMKII is a polymer compound composed  
of 12 monomers [16]. Each CaMKII monomer 
has three main domains: N-terminal catalytic 
domain, self regulatory domain and C-terminal 
association domain (Figure 2 and Table 1) [17, 
18]. The catalytic activity of the self regulatory 
domain which has the binding site with Ca2+/
CaM is relatively low without stimulation, and 
regulates the activation state through binding 
Ca2+/CaM and self phosphorylation [18]. When 
the intracellular Ca2+ concentration increases, 
it can be keenly sensed by the regulatory do- 
main, and thus Ca2+/CaM is bound to liberate 
the catalytic domain and activate CaMKII [19, 
20]. When the concentration of Ca2+ increas- 
es, CaMKII will self phosphorylate at threonine 
287 (T287), and destroy the interaction bet- 
ween self inhibition domain and catalytic site 
[21]. Autophosphorylation occurs between dif-
ferent subunits of CaMKII holoenzyme, and  
the polymerization structure of CaMKII hol en- 
zyme increases the relative concentration of 
subunits when autophosphorylation occurs, 
which makes the built-in kinase cascade pos-

sible [18]. T287 autophosphorylation can sig-
nificantly increase the affinity of CaMkinase to 
calmodulin [20]. Phosphorylation of substrate 
subunits at T287 depends on Ca2+/CaM bind-
ing [22]. Self phosphorylation of T287 can pro-
duce CaM capture and maintain the activity of 
CaMKII [23]. The N-terminal of the binding 
domain of Ca2+/CaM and CaM produce high 
affinity binding after self phosphorylation [24]. 
It has also been proved that with the help of 
CASK, when T305/T306 site is self phosphory-
lated, the sensitivity of CaM binding domain to 
CaM will be lost [25, 26]. 

In addition to autophosphorylation, there are 
several other post-translational modifications. 
The nitrosylation of Cys290 site promotes the 
NO-induced CaMKII to develop and live [27], 
and increases Ca2+ spark frequency after acti-
vation [28]. The direct oxidation of M281/282 
to CaMKII is mainly through the H2O2 activa- 
tion pathway, and the direct oxidation at Met- 
281/282 site is possible to increase the coor- 
dination activities of CaMKII [29]. When the bl- 
ood glucose rises sharply, O-GlcNAc covalently 
will modify CaMKII. CaMKII modified by O-Glc- 
NAc at Ser279 can activate CaMKII autono-
mously, which can produce molecular memory 
even after calcium concentration decreases 
[30]. The inactivation of CaMKII also involves 
some complex mechanisms, one of which is  
to block the signal to inhibit CaMKII by expre- 
ssing inhibitor protein. Besides, PEP-19 indi-

Table 1. Structure and function of CaMKII subunit
Domain Structure and function
N-terminal catalytic domain The catalytic domain is autoinhibited by a pseudosubstrate autoregulatory  

sequence that is disinhibited following Ca2+/CaM binding.
self regulatory domain The association domain produces the native form of the enzyme, a multimeric 

holoenzyme composed of 12 subunits. 
C-terminal association domain Conserved sites of autophosphorylation are indicated in the autoregulatory 

region.
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Figure 3. Structure, regulatory sites and activation mechanism of CaMKII. CaMKII includes catalytic, regulatory and 
association domains. Different stimuli can act on the corresponding sites at regulaory domain, directing CaMKII 
to undergo autophosphorylation or post-translational modification. When Ca2+ concentration increases, the Ca2+/
CaM complex binds to the self-regulatory domain, which releases its inhibition of the catalytic domain, enabling it 
to phosphorylate the target. 

rectly mobilizes intracellular Ca2+ flow and an- 
tagonizes the activation of CaMKII [31]. PP2A 
belongs to heterotrimer, and multiple PP2A ho- 
loenzymes may contribute to the dephosphory-
lation of soluble CaMKII (Figure 3) [32]. 

CaMKII can regulate the intracellular calcium 
content. CaMKII is distributed in the high-den-
sity cardiomyocytes near the T-tube, and in the 
vicinity of mitochondria and nuclei, close to 
RyR2 channels of LTCC and SR, which can re- 
gulate calcium release triggered by calcium in 
cells [33]. It has been suggested that CaMKII 
can inhibit the expression of LTCC by activating 
downstream regulatory elements through com-
bination with the transcription factor Dream, 
which forms a negative feedback mechanism 
and inhibits the inflow of Ca2+ [34]. IP3R2, the 
main subtype in cardiomyocytes, will be phos-
phorylated by CaMKII at specific sites, which 
will cause the release of nuclear Ca2+ mediated 
by IP3R and enhance the opening of RyR [35, 
36]. CaMKII can phosphorylate PLN, which  
promotes the reabsorption of SR Ca2+ and the 
relaxation of muscle cells, and counteracts the 
enhanced release of Ca2+ [37]. RyR in sarco-

plasmic reticulum is the main target of phos-
phorylation of CaMKII. CaMKII can phosphory-
late RyR2 at ser2815, change the probability  
of RyR opening, increase the leakage of SR  
calcium into the cytoplasm, and enhance the 
spontaneous release of SR Ca2+ (Figure 1) [38]. 

CaMKII is also distinguished by its four isomers 
(α, β, γ, δ), with different expression rates in  
different types of tissue, α and β are mainly in 
neurons [39], δ and some γ are mainly located 
in cardiomyocytes [40]. At present, CaMKIIδ 
was studied most and fully. CaMKIIδ can indu- 
ce cardiac hypertrophy after catecholamine sti- 
mulation [41]. It mediates histone deacetyla- 
se (HDAC) phosphorylation, regulation of tran-
scription, and stress overload [42]. Other stud-
ies have shown that the activation of CaMKIIδ 
can mediate inflammation-driven remodeling 
[43]. The activated CaMKIIδ triggers inflamma-
tory bodies in cardiomyocytes by NF-κB and 
ROS signals and induces the production of ch- 
emokines, thus promoting macrophage infiltra-
tion [44]. δA is mainly expressed in neonatal 
cardiomyocytes [45], and overexpressed in pl- 
asma membrane and T-tube [46]. The nuclear 
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localization sequence is mainly located in 
CaMKIIδB, while CaMKIIδC is mainly located in 
cytoplasm [47]. 

The Increasing expression of CaMKIIδA can 
enhance EC coupling [48]. CaMKIIδB plays an 
anti apoptotic role by binding the necessary 
transcription factor GATA4 and protein Bcl-2  
to the premotor region, which can inhibit car-
diomyocyte apoptosis after adriamycin treat-
ment [49]. CaMKIIδC can improve diastolic 
function [50], and it can significantly enhance 
the apoptosis of cardiomyocytes induced by 
β1-adrenergic receptor (β1AR) [51]. It is signifi-
cant to study the relationship between these 
splicing variants and different stages of heart 
development and disease. 

The role of CaMKII in heart disease

Myocardial apoptosis and necrosis

In general physiological state, the uptake of 
Ca2+ by mitochondria plays an important role  
in metabolic response, which is used to incre- 
ase the activity of tricarboxylic acid cycle to 
increase the reduction equivalent, mainly in  
the form of NADPH, thus promoting oxidative 
phosphorylation and the production of ATP. If 
there are too much Ca2+ in mitochondria, it will 
cause apoptosis or programmed necrosis th- 
rough open MPTP. It is evidenced that activat- 
ed CaMKII can induce harmful cardiac remo- 
deling and cardiomyocyte apoptosis [52, 53]. 
Under the continuous stimulation of Angioten- 
sin ll (AngII), cardiomyocytes will produce ROS, 
and through PKA mediating activation of CaM- 
KII, ROS can also increase the activity of CaM- 
KII by oxidation of M281/282 site, aggravate 
heart injury, and even resulted in the increase 
of mortality after myocardial infarction [54, 
55]. About 10% of CaMKII is located in mito-
chondria [56]. Compared with WT, there is no 
significant increase in the expression of CaMKII 
in Epac1-/- cardiac myocytes, and similar results 
are obtained by transfection of Epac1∆2-37 into 
WT cardiac myocytes and immunoprecipita- 
tion assay, and these results suggest that MI- 
TEpac1 (mitochondrial exchange protein direct-
ly activated by cAMP 1) is involved in the mito-
chondrial localization of CaMKII. Knockout of 
CaMKIIδ with specific siRNA can prevent IDH2 
phosphorylation induced by 8-CPT-AM. Final- 
ly, some studies show that MITEpac1-CaMKII 
pathway inhibits the activity of isocitrate dehy-

drogenase (IDH2) and reduces ROS detoxifica-
tion, so as to promote the death of cardiomyo-
cytes in the process of I/R [57]. 

Inhibition of SR dependent phosphorylation of 
CaMKII can prevent I/R damage induced by 
CaMKII, which is closely related to RyR2, PLN, 
and two substrates of CaMKII at SR level [58]. 
Activated CaMKIIi is important for the activity 
of calcium-regulated/mediated [59]. In the mo- 
del of cardiac arrest, after 30 minutes of car- 
diac arrest and the same time of extraporal 
membrane oxygenation (ECMO) reperfusion, 
the ratio of PCaMKII T287 to total CaMKII in the 
experimental group is almost twice that of the 
control group. After cardiac arrest/reperfusion 
in vivo, the phosphorylation state of RyR2 and 
PLN, which are the common targets of CaMKII 
and PKA, is also detected. The results clearly 
shows that the CaMKII rather than PKA path-
way is activated after cardiac arrest, thus ma- 
intaining the increase of CICR triggered by the 
surge of catecholamine and reactive oxygen 
species [60]. The phosphorylation level of Thr- 
17-PLN and PThr17-PLN is used as the index of 
CaMKII activity. It is found that HMGB1 stimu-
lates RAGE to enhance CaMKII activation, and 
CGP, a β1AR blocker, which could completely 
eliminate CaMKII induced by HMGB1. Under 
the influence of hormone and metabolism, 
RAGE and β1AR can form a protein complex, 
activate the common downstream signal mo- 
lecule CaMKII, and result in the death and re- 
modeling of cardiac myocytes [61]. 

Ox LDL is the key to heart injury. In the pres-
ence of ox LDL, the use of KN93 (CaMKII inhibi-
tor) and Mn (III) TABP (ROS scavenger) signifi-
cantly reduce the apoptosis rate, which sug-
gests that ox LDL stimulates apoptosis throu- 
gh CaMKII and ROS pathways [62]. RIP3 binds 
directly to CaMKII and makes it phosphorylate 
at T287 and oxidize at M281/282, which can 
cause various heart diseases [63]. RIP3 can 
also bind to MLKL, and the T357 and S358 
sites of MLKL are phosphorylated, which can 
cause cell necrosis [64]. In SNI, chronic pain is 
induced, and the phosphorylation of RIP3 re- 
duces the expression of TNFα, which in turn 
inhibits the phosphorylation of MLKL and CaM- 
KII, and significantly reduces the myocardial 
necrosis of SNI mice induced by myocardial 
ischemia-reperfusion (MI/R) [65]. It has been 
proved that CaMKII can regulate the expressi- 
on of membrane surface and current density of 
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KATP channels in the heart [66]. In healthy 
hearts, CaMKII phosphorylates Kir6. 2 pore to 
form KATP channel subunit, which promotes 
the endocytosis of KATP channel [67]. Cardiac 
KATP pathway is closely linked with cellular 
metabolic signaling pathway, which plays an 
important role in the coordination of myocardial 
energy health [68], and can also reduce the 
injury caused by myocardial ischemia-reperfu-
sion [69]. Under pathophysiological conditions, 
such as the non ischemic heart failure model 
induced by ligation of the transverse aorta, 
CaMKII will be continuously activated, the 
expression of KATP channel on the membrane 
surface will be significantly reduced, and the 
energy consumption of the heart will increase. 
Therefore, it is helpful for the development of 
myocardial injury, cell death and heart failure 
[70]. In vitro kinase test, CgA fragment cates-
tatin (CST) strongly inhibits the activity of 
CaMKIIδ in a dose-dependent manner. In vivo, 
CST could alleviate the phosphorylation of 
RyR2 and PLB in CaMKIIδ dependent. In post 
infarction HF mice, chromogranin A(CGA)-CST 
conversion is impaired, and the inhibition of 
CaMKIIδ is reduced, which will increase the 
mortality of cardiomyocytes [71]. It is speculat-
ed that CaMKII plays a significant regulatory 
role by preventing uncontrolled necrosis in 
myocardial injury. 

Myocardial pressure overload and hypertrophy

Cardiac hypertrophy is an adaptive cardiac re- 
sponse to cardiac stress. Recent evidence st- 
rongly suggests that CaMKII is a key regulator 
of cardiac pathological hypertrophy [72], and 
its mechanism is being explored by the further 
studies. The continuous increase of intracellu-
lar calcium concentration can activate calci-
neurin (PP2B), which combines with the acti-
vated nuclear factor of activated T cells (NFAT). 
The rapid transfer of NFAT to the nucleus can 
induce pathological cardiac hypertrophy [73, 
74]. Cellular hypertrophy and fibrosis are im- 
portant consequences of cardiac remodeling 
caused by obesity or hyperlipidemia. It is re 
ported that free fatty acids, such as palmitic 
acid, can induce cellular hypertrophy [75]. In  
a diabetic model, impaired intracellular Ca2+ 
metabolism activates CaMKII, promotes ROS 
production and brings about cardiac remodel-
ing [76]. RT-qPCR analysis shows that 12 ho- 
urs after palmitate treatment, the proliferation 
markers (ANP and BNP) and fibrosis markers 

(TGF-β1, collagen1) significantly increase, whi- 
le CaMKII inhibitor has a significant inhibitory 
effect on them. These results indicate that 
CaMKII plays an important role in mediating 
hypertrophy and fibrosis of H9c2 cells [77]. 
Previous studies indicate that overexpression 
of STAT3 can aggravate pathological cardiac 
hypertrophy [78]. Some studies suggest that 
CaMKII can promote the expression of STAT3, 
and IL-6 can activate the CaMKII-STAT3 path-
way in cardiac hypertrophy [79, 80]. A mouse 
model of cardiac hypertrophy is established by 
TAC surgery. ANG-II treating mice shows high- 
er heart/body weight and heart weight/length 
ratio. Echocardiography suggests that the left 
ventricular wall of ANG-II group is thinner than 
that of PBS group. But after the silence of 
CaMKII, EF and FS in the Silence Group are 
lower than those in the control group, which 
suggests that the silence of CaMKII can elimi-
nate the myocardial hypertrophy induced by 
ANGII [81]. 

A previous report suggests that TRPC is a cat-
ion selective internal flow channel, overexpres-
sion can cause cardiac hypertrophy, and Ca2+ 
can regulate gene transcription of TRPC throu- 
gh CaMKII and calinerin [82, 83]. It has been 
evidenced that TRPA1 expression increase in 
hypertrophic heart, and HC and TCS (TRPA1 
blocker) can reduce myocardial hypertrophy  
in vivo, and can significantly reduce the pres-
sure overload causing autophosphorylation of 
CaMKII, indicating that the activation of CaM- 
KII may be necessary for TRPA1 mediating my- 
ocardial hypertrophy [84]. At the same time,  
the combination of calcineurin and CaMKII in- 
hibitor can significantly reduce hypertrophic re- 
sponse induced by IGF-IIR [85]. It has been 
proved that the expression of cardiac hypertro-
phy gene induced by urotensin II (UII) requires 
the participation of CaMK kinase [86]. UII is 
used to stimulate the primary culture of neona-
tal rat cardiomyocytes for 48 h. The cell size, 
protein/DNA content and intracellular Ca2+ in- 
crease, and the phosphorylation of CaMKII  
and its downstream targets PLN and SERCA2a 
increase. KN-93 treatment can reverse all of 
these effects of UII. The results show that UII 
could induce cardiomyocyte hypertrophy th- 
rough the upregulation of the signaling path- 
way of the PLN Thr17-phosphorylation mediat-
ed by CaMKII [87]. 
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In the heart samples of HCM patients, the 
phosphorylation of CaMKII and its downstream 
targets also increase [88]. In HCM, the increa- 
se of INaL will cause the overload of Na+ in cells, 
which will damage the NCX mediating Ca2+ 
extrusion, give rise to Ca2+ overload, and then 
enhance the activity of CaMKII through calmo- 
dulin binding [89]. The activated CaMKII can 
move to the nucleus and phosphorylate the 
hystone deacetylase (HDAC), thus relieving the 
inhibition of myocyte enhancer factor-2 (MEF2) 
- controlled genes and promoting cardiac hy- 
pertrophy [90]. In addition, recent evidence re- 
veals the key role of mitochondrial dynamics in 
the pathogenesis of cardiac hypertrophy [91]. 
Drp1, a mitochondrial mission protein, is used 
to feed rats with high salt food to promote 
hypertension. Mdivi1 (an inhibitor of drp1) is 
used or not used at the same time, and then 
myocardial hypertrophy is evaluated. High salt 
fed rats show left ventricular hypertrophy (LVH), 
cardiomyocyte hypertrophy and myocardial fib- 
rosis, while mdivi1 inhibited them by inhibiting 
calcineurin and CaMKII [92]. 

Arrhythmia

It is well known that late INa elevation is closely 
related to the development of systolic dysfunc-
tion and arrhythmia [93]. The disorder of cardi-
ac Ca2+ circulation is closely related to the late 
INa. The results show that the late INa dependent 
increase induced by Ca2+ leakage of SR is also 
mediated by CaMKII in mouse cardiomyocyt- 
es [94]. The enhanced INa of mouse cardiomyo-
cytes results in the increase of Ca2+ spark fre-
quency and Ca2+ transient amplitude. Inhibition 
of CaMKII or PKA attenuates the late INa de- 
pendent induction of Ca2+ leakage of SR. This 
study shows that the disturbance of phospha-
tase/kinase balance brings about the destruc-
tion of Ca2+ circulation through CaMKII and PKA 
dependent pathways [95]. In HCM samples, 
CaMKII increases the Na+ channel phosphory-
lation level by 2.5 times, which may lead to the 
increase of INaL in HCM cardiomyocytes, thus 
resulting in AP prolongation and Na+ overload 
[96]. Compared with normal myocardium, the 
rate of ICAL inactivation observed in HCM car- 
diomyocytes is slower [97]. CaMKII increases 
phosphorylation of β-subunit of L-type Ca2+ ch- 
annel, thus delaying repolarization [98]. 

The increase of ROS will cause the oxidation  
of RyR2, which will result in SR Ca2+ leak and 

promote arrhythmia in mice [99, 100]. ROS  
can enhance the response of CaMKII to the 
increase of Ca2+, and change the excitation 
contraction coupling of the heart [101]. Fluo- 
rescein staining shows that the increase of 
ROS production in MDX mouse ventricular my- 
ocytes is consistent with the increase of ox 
CaMKII in Western blotting. The results show- 
ed that inhibition of ROS or ox CaMKII can pro-
tect Ca2+ in arrhythmogenic cells and prevent 
ventricular arrhythmia in DMD mice [102]. The- 
re are many factors that cause arrhythmia. Ex- 
cessive drinking can easily induce arrhythmia 
[103]. The activation of JNK is helpful for liver 
toxicity and other organ damage induced by 
alcohol [104]. CaMKII of WT mice labeled by 
human influenza hemagglutinin is overexpre- 
ssed in HEK293 cells after 24 hours of alcohol 
exposure. It is found that drinking alcohol sig-
nificantly increases the activity of CaMKII, but 
when JNK2 inhibitors appeare, this will not hap-
pen. The pure active human JNK2 protein is 
incubated with the anti ha antibody immuno-
precipitated CaMKII of WT mice or mutant Ca- 
MKIIT286A protein. It is found that activated 
JNK2 significantly increase the phosphoryla-
tion of HA labeled CaMKII protein. The results 
show that JNK2 is activated by alcohol, and 
then JNK2 phosphorylates CaMKII protein and 
enhances the activity of CaMKII in cells, which 
results in atrial arrhythmia [105]. 

Catecholaminergic pleomorphic ventricular ta- 
chycardia (CPVT) is an arrhythmia caused by 
RyR2 gene mutation [106]. CaMKII phosphory-
lated RYR2-S2814 can promote Ca2+ leakage 
of RyR2 in diastolic period and promote arrhy- 
thmia [107]. A human engineering tissue model 
based on CPVT is constructed in a laboratory. 
In the model, when CPVT tissue is stimulated 
by rapid pacing and catecholamine, it is easy  
to have reversible rhythm. The Ca2+ spark and 
depolarization rate in CPVT related tissues are 
significantly reduced by cell permeable AIP. RY- 
R2-S2814 phosphorylation by CaMKII is found 
to be necessary for the cause arrhythmia po- 
tential in CPVT tissue. These studies indicate 
that CaMKII is a key signal molecule in the pa- 
thogenesis of CPVT [108]. Fibroblast growth 
factor (FGF)-23 can regulate the steady state  
of phosphorus and calcium [109]. It can pro-
mote the expression of PKC, increase INaL, bring 
about abnormal oxidation of CaMKII and cal- 
cium treatment, and induce atrial arrhythmia 



The role of CaMKII in heart disease

7632 Am J Transl Res 2020;12(12):7625-7639

[110, 111]. The central role of CaMKII in 
arrhythmia pathology makes it an attractive 
therapeutic target. 

Treatment methods for CaMKII

CaMKII is a downstream target with a variety of 
agonists and has been regarded as a conven-
tional target for the treatment of heart disease. 
KN-93, a common CaMKII inhibitor, can affect 
many ion channels, including LTCC [112]. One 
study finds that the use of CaMKII inhibitor 
KN-93 in the experimental substance reduces 
the activity of CaMKII in AF with noradrenaline 
[113]. SMP-114 is an ATP competitive inhibitor 
of CaMKII, which has a significant inhibitory 
effect on VEGF production of macrophages in 
rheumatoid synovium fluid and can be used in 
the treatment of arthritis [114-116]. It has be- 
en proved that 10 mol/L SMP-114 can greatly 
inhibit the activity of CaMKII [117]. The reduc-
tion of VEGF production by smp-114 is due to 
its inhibition of CaMKII, similar with KN-93 
[118]. It is found that SMP-114 strongly reduc-
es the correlation of SRCa2+ leak and arrhyth-
mia in cardiac myocytes, and improves post-
rest potentiation of cardiomyocyte Ca2+ tran-
sients and contractility. In addition, it can inhi- 
bit the late sodium current [119]. AS105 is al- 
so a high affinity ATP competitive CaMKII in- 
hibitor [120]. Cardiomyocytes of heart failure 
mice overexpressing CaMKIIδC are isolated fr- 
om the donor, and AS105 effectively reduced 
the leakage of SRCa2+ in diastolic phase. In ad- 
dition, the ability of SR to accumulate Ca2+ is 
enhanced in the presence of SR Ca2+ [121]. 

All trans retinoic acid (RA) can alleviate the 
transition from adaptive cardiac hypertrophy to 
heart failure, and also can alleviate the ven- 
tricular remodeling after myocardial infarction 
[122, 123]. It has been shown that the absen- 
ce of Cellular tretinoin binding protein 1 (Cra- 
bp1) leads to the over activation of CaMKII, 
which suggests that Crabp1 has a protective 
effect on the reduction of inadaptable cardiac 
remodeling [124]. Under the induction of iso-
proterenol (ISO), mice with Crabp1 knockout 
experiences more severe heart failure and re- 
modeling. RA is used to pretreat induced mice. 
It is found that the ejection fraction recovered 
in the wild-type mice, but not in the CKO mice. 
Cell culture experiments confirms that RA in- 
hibits the phosphorylation of CaMKII, in which 
crabp1 participate. The molecular data reveals 

that RA selectively enhances the interaction 
between Crabp1 and the regulatory domains  
of CaMKII. These data suggests that RA plays  
a protective role in β-adrenergic stimulation of 
cardiac remodeling, mainly due to its inhibition 
of CaMKII activity [125]. 

Researches show that Chicago Sky Blue 6B 
(CSB) has many biological targets, including 
VGLUT [126], and can reduce the conditional 
reward effect caused by methamphetamine 
(METH) and relieve pain [127, 128]. The prolif-
eration of p8 cardiomyocytes is successfully 
induced by CSB, a VGLUT inhibitor. After 5 days 
of MI, CSB prevents the increase of phosphory-
lated CaMKII under the premise of keeping the 
total level of CaMKII. CSB treatment reduces 
the scar size, maintains the cardiac ejection 
fraction (EF) and fractional shortening (FS),  
and inhibition of CaMKII weakens the protec-
tive effect of CSB. The experimental data sh- 
ows that the CSB in adult mice promotes the 
cardiac repair and improves the contractility of 
cardiomyocytes by inhibiting the CaMKII sign- 
al pathway [129]. Phenolic compounds have 
many medicinal and health care functions 
[130], and they can be anti-inflammatory, anti-
oxidation, affect the metabolism of sugar and 
lipid, and prevent cardiovascular disease and 
its complications [131-134]. Three month old 
Wistar rats are selected and treated with phe-
nol compounds (PC) for 14 months. Compar- 
ed with the untreated control group, the PC 
group shows a decrease in ejection fraction, 
left ventricular hypertrophy, and AR ventricular 
diameter and posterior wall thickness. The an- 
alysis of cardiac tissue protein shows that PC 
could weaken many hypertrophic pathways, in- 
cluding calcineurin/activated T-cell nuclear fac-
tor (NFATc3) and CaMKII [135]. 

Chinese herbal medicine has a unique curative 
effect in the treatment of chronic and complex 
diseases. Ginseng can improve the general he- 
alth condition and has been widely used in the 
treatment of cardiovascular diseases [136], 
which combined with other drugs can achieve 
better therapeutic effect [137]. The results sh- 
ow that ginseng combined with Fuzi Beimu can 
maintain the lung function improvement caus- 
ed by FBC (Fuzi and Beimucompatibility), inhi- 
bit the cardiotoxicity, inhibit the activation of 
βAR-Gs-PKA/CaMKII and Epac1/ERK1/2 axis 
through the crosstalk of PKA and Epac signal 
pathways, and protect the cardiac function and 
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inhibit the myocardial apoptosis [138]. In addi-
tion, the YiQiFuMai powder injection (YQFM)  
is a traditional Chinese medicine prescription 
which has been used in the treatment of car- 
diovascular diseases. The research shows that 
YQFM can improve the mitochondrial function 
of heart failure (HF) by inhibiting the production 
of ROS and the CaMKII signal pathway, and pro-
vide another way for the clinical treatment of 
HF [139]. 

Conclusions

Under normal conditions, CaMKII can stimulate 
energy production, glucose uptake, sarcolem-
ma ion flux, SR Ca2+ release/reuptake and myo-
cyte contraction/relaxation, so as to promote 
cardiac adaptability. However, in the pathologi-
cal state, various therapeutic factors will ca- 
use the continuous and chronic activation of 
CaMKII, which will cause mitochondrial dys-
function, remodeling of ion channels, intra- 
cellular Ca2+ circulation disorder, inflammation 
and myocardial contraction dysfunction, and 
promote the progress of myocardial necrosis, 
hypertrophy, arrhythmia and other diseases. 
Therefore, inhibition of the activation of CaM- 
KII is likely to have a good effect on inhibiting 
the progress of heart disease. This paper has 
introduced several new drugs targeting at Ca- 
MKII, and in the future more studies should be 
made to develop specific drugs targeting at the 
heart subtype of CaMKII, and focus on the clini-
cal effect and possible side effects of the com-
bination of new drugs for CaMKII and tradition-
al drugs for heart disease.
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