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Abstract: Small-molecule drugs are organic compounds affecting molecular pathways by targeting important pro-
teins, which have a low molecular weight, making them penetrate cells easily. Small-molecule drugs can be devel-
oped from leads derived from rational drug design or isolated from natural resources. As commonly used medica-
tions, small-molecule drugs can be taken orally, which enter cells to act on intracellular targets. These characteris-
tics make small-molecule drugs promising candidates for drug development, and they are increasingly favored in 
the pharmaceutical market. Despite the advancements in molecular genetics and effective new processes in drug 
development, the drugs currently used in clinical practice are inadequate due to their poor efficacy or severe side 
effects. Therefore, developing new safe and efficient drugs is a top priority for disease control and curing.
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Small-molecule drugs are organic compounds 
affecting molecular pathways by targeting 
important proteins, which have a low molecular 
weight, making them penetrate cells easily. 
Small-molecule drugs can be developed from 
leads derived from rational drug design or iso-
lated from natural resources [1-3]. As common-
ly used medications, small-molecule drugs can 
be taken orally, which enter cells to act on intra-
cellular targets [4]. These characteristics make 
small-molecule drugs promising candidates for 
drug development, and they are increasingly 
favored in the pharmaceutical market [5-7]. 
Despite the advancements in molecular genet-
ics and effective new processes in drug devel-
opment, the drugs currently used in clinical 
practice are inadequate due to their poor effi-
cacy or severe side effects. Therefore, develop-
ing new safe and efficient drugs is a top priority 
for disease control and curing. Since the begin-
ning of the 21st century, all basic scientific dis-
ciplines have developed rapidly, and the result-
ing knowledge and techniques have been 
applied to the medical field [8-11].

This review summarizes the basic approaches 
of research to discover small-molecule drugs. 
Research strategies for discovering break-

through drugs consist of discovery of lead com-
pounds and optimization of lead compounds, 
each of which play important roles in how these 
drugs ultimately reach the pharmaceutical mar-
ket (Figure 1) [12-15].

Discovery of lead compounds

Lead compounds can be obtained from natural 
sources (e.g., animals, plants, and microorgan-
isms), and their physiological processes as well 
as drug metabolites produced from exogenous 
drug applications. Prospective lead compounds 
can be further screened and optimized via 
observations of clinical side effects of tested 
drugs [16-19].

Obtaining lead compounds from natural prod-
ucts

The search for natural products and the com-
prehensive analysis of their novel structural, 
chemical, and pharmacological characteristics 
represent an important pathway for lead com-
pound discovery [20]. According to statistics, 
approximately half of the clinical drugs currently 
on the market are derived from natural prod-
ucts and their derivatives [21-23]. For example, 
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morphine was isolated from opium in 1808. In 
the 1960s, the antibiotic cephalosporin C was 
obtained from metabolites of cephalosporins, 
and a series of semi-synthetic antibiotics with 
considerable antibacterial activities and wide 
antibacterial spectra were obtained by modify-
ing the side chains of seven amino groups [24].

In 1972, Chinese scientists isolated artemis-
inin from Artemisia annua L, and, through struc-
tural modification, developed artemether, arte-
sunate, and dihydroartemisin, all of which have 
been shown to exhibit more effective anti-
malarial activities than the originally isolated 
artemisinin [25-27]. In recent years, the United 
States isolated the anticancer active ingredi-
ent, paclitaxel, from the taxol plant, which has 
been approved for commercial use and is the 
drug of choice for clinical treatment of ovarian 
cancer [28].

Obtaining a lead compound from an intermedi-
ate

During the synthesis of a drug, many intermedi-
ates appear, and the structures of these inter-

mediates and final products are often similar to 
one another and to the original drug [29]. 
Screening these compounds to obtain pharma-
cologically active structures is one way to 
obtain lead compounds (Figure 2) [30-32]. For 
example, from the synthesis of the antitumor 
drug, cytarabine, the intermediate, cyclocyti-
dine, is obtained and also exhibits antitumor 
activity [33]. Compared with cytarabine, cyclo-
cytidine has additional advantages in terms of 
its slow metabolism in the body, long duration 
of action, and minimal effects, all of which have 
led it to become a clinical drug for leukemia 
treatment [34-37].

Obtaining lead compounds from basic re-
search

The rapid development of biochemistry, molec-
ular biology, pharmacology, and other related 
disciplines has provided the basis and means 
for the improved research and development of 
small-molecule drugs. This period of develop-
ment also provided novel targets and lead com-
pounds for the design of small-molecule drugs, 

Figure 1. Workflow of in silico approaches for small molecule drug discovery. The path leading to the development 
of a new drug is long and complex, representing the convergence of in silico and in vitro screenings and in vitro and 
in vivo testing and validation, which highlight the need for a faster track in the procedures for drug development to 
be met by increasing the in silico part of the process, performing via digital computing a series of time-saving evalu-
ations that can greatly simplify the in vitro procedures.
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such as enzymes, receptors, ion channels, and 
nucleic acids [38-41]. On this basis, research-
ers have conducted in-depth studies on the 
mechanisms of action of enzymes and recep-
tors in the body [42].

According to the structures and performances 
of drug targets, molecular engineering meth-
ods have been used to design various mole-
cules (Figure 3) [43-45]. Enzymatic inhibitors, 
receptor agonists/antagonists, and channel 
blockers have all been successfully designed 
[46-49]. For example, the renin-angiotensin-
aldosterone system is active in hypertensive 
patients, in which angiotensin-converting en- 
zyme (ACE) catalyzes the conversion of angio-
tensin I to angiotensin II, while angiotensin II 
can contract vascular smooth muscle and pro-
mote aldosterone synthesis to raise blood pres-
sure [50]. By inhibiting ACE, researchers have 
been able to cut off the production of angioten-
sin II and have developed a series of drugs, 
including captopril, enalapril, and fosinopril, to 
treat hypertension [51].

diverse. Since drugs are difficult to distribute 
specifically to target tissues for binding to spe-
cific receptors, they have side effects in addi-
tion to therapeutic effects [60]. To reduce the 
side effects of a drug, researchers often care-
fully observe and systematically study its side 
effects and metabolism, and then develop new 
dosage protocols or propose new methods for 
the drug’s use. For example, vinblastine and 
vincristine compounds were first used as hypo-
glycemic drugs, but they were subsequently 
found to also significantly reduce white blood 
cells [61]. Further studies have found that vin-
blastine and vincristine are effective in lympho-
blastic leukemia transplantation in mice, and 
thus, these compounds have since become 
clinical drugs for leukemia treatment [62].

Lead compounds found by computer-aided 
design

Computer-aided drug design uses computers 
as a tool to leverage the existing molecular 
structures and target information of drugs to 

Figure 2. Overview of various discovery platforms for antibacterial drugs. 
There is a very low probability for a biologically active compounds to succeed 
from the pre-clinical to clinical phase of drug discovery. For this reason, reli-
able discovery platforms are needed to continuously produce compounds 
with antibacterial activity that may be lead compounds for further studies. 
The currently defined antibiotic discovery platforms are summarized.

Lead compounds discovered 
from metabolites

Drug metabolism often pro-
duces oxidation, reduction, 
alkylation, demethylation, and 
binding reactions [52-55]. If a 
drug’s metabolites have phar-
macological activities, these 
metabolites can also be used 
as drugs or after structural 
modifications of specific func-
tional groups as lead com-
pounds themselves. The ad 
hoc protection of some func-
tional groups has often led to 
highly efficacious drugs [56-
58]. For example, sulfon-
amides, highly efficacious le- 
ad compounds, have been 
found in the urine of patients 
with staphylococcal septicae-
mia who were treated with 
prontosil after drug metabo-
lism [59].

Lead compounds found from 
side effects

When drugs are applied to the 
human body, the biological 
activities produced are often 
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guide the directional design of small-molecule 
drugs through theoretical simulations, calcula-
tions, and predictions [63-65]. Using a mathe-
matical-combination method, related structur-
al units are sequentially connected in the form 
of covalent bonds, and a compound molecular 
library is then established [66]. The molecular 
library of compounds obtained by combinatori-
al chemistry is directly used for large-scale 
screening. This method far exceeds conven-
tional methods in terms of quantity of leads 
and has incomparable advantages in synthesis 
speed [67].

Using this highly efficient, minimal, and highly 
automated combinatorial chemistry and mass-
screening technology, it is possible to screen 
two million to two billion compounds for a par-
ticular molecular target in one to two years [68-
71]. The combination of computer-assisted 
drug design and combinatorial chemistry 
makes screening more accurate, efficient, and 
convenient than many other methods. This 
computer-assisted technology has contributed 
to a major change in the methodology of small-
molecule drug discovery, marking the begin-
ning of a new era in the development of small-
molecule drugs [72].

ATG4B has been proposed as a drug target. 
There is increasing evidence that modulation of 

ATG4B by either si/shRNA-mediated knock-
down or the expression of a dominant negative 
construct yields beneficial results in multiple 
cancer models, including breast, pancreatic, 
and lung cancer. Several ATG4B agonists and 
inhibitors have been described in the literature, 
identified either by structure-guided molecular 
docking of compounds in silico, or by screening 
chemical libraries of compounds with known 
activity (Table 1).

Optimization of lead compounds

After the structure of a lead compound is deter-
mined, it is often found to have poor pharmaco-
kinetic properties and/or substantial side 
effects [73]. These adverse reactions often 
make lead compounds clinically unusable. 
Therefore, it is often necessary to optimize the 
structure of the lead compound to improve bio-
logical activity, reduce toxicity, increase speci-
ficity, and/or improve pharmacokinetic behav-
ior, in order to improve the drug-forming proper-
ties of the lead compound and apply it in the 
clinical setting [74-77].

The primary strategies for lead compound opti-
mization are as follows: (1) changing the meta-
bolic pathway to improve metabolic stability, (2) 
structural optimization to reduce toxicity risks 
in drug design, (3) structural modifications to 

Figure 3. Workflow for machine learning in drug discovery. Over the past decade, Machine learning methods have 
been recognized as the most important tools for extracting chemical compounds with important biological activities 
from large chemical databases. To understand the physiological and pathological phenomena, it is important to 
identify ligands that modulate a particular target activity. The main steps of machine learning comprise data colla-
tion, chemical descriptor calculation, classifier/model selection, and model validation.
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improve water solubility, (4) promoting the pas-
sage of compounds through the blood-brain 
barrier, (5) reducing cardiac toxicity, and (6) 
improving plasma stability [78-81].

Prodrug modification strategies

Prodrugs, also known as drug precursors or 
precursor drugs, are compounds with no phar-
macological activity that can be metabolized in 
the body and converted into substances with 
specific pharmacological activity [82]. Prodrug 
design involves improving poor metabolic sta-
bility, potential toxicity, low water-solubility, and 
poor blood-brain barrier permeability in target 
compounds [83-86]. To solve these prodrug 
problems, the originating drugs are often con-
nected with non-toxic compounds to form new 
compounds; a new compound may then 
improve the shortcomings of the original drug. 
After a new drug is metabolized in the body, it 
can be decomposed into the active drug and 
non-toxic compounds through metabolic pro-
cesses, such as the action of enzymatic or 
hydrolysis reactions, to exert its efficacy in the 
body [87-89].

Prodrug modification strategies usually include 
esterification, acylation, amidation, and other 
methods [90]. For example, the oral bioavail-
ability of the antibiotic ampicillin is 40%. Polar 
carboxyl esterification has been used to obtain 
the prodrug, pivampicillin, which has increased 
lipophilicity and an oral bioavailability reaching 
95% [91]. Additionally, clinical application of 
clopidogrel has shown that its cardiotoxicity 
risk is associated with clopidogrel resistance 
[92]. A prodrug strategy was used to modify 
clopidogrel thiolactone, the metabolic inter- 
mediate of clopidogrel, to obtain vicagrel. 

Specifically, vicagrel does not need CYP2C19  
to metabolize into the thiolactone form, which 
can effectively reduce clopidogrel resistance 
[93-96].

At the same time, the toxicity risk has been 
shown to be greatly reduced due to the lower 
effective dose of vicagrel. As another example, 
a dual Src/Abl inhibitor, pyrazolo[3,4-d]pyrimi-
dine derivative, has been shown to have nano-
molar-level activity at both Src and Abl enzy-
matic levels, but its cellular activity is not high, 
which is probably due to poor water solubility 
(only 0.05 mg ml-1) [97]. The solubility of an 
acylated prodrug was 600 times higher, and 
the corresponding level of cellular activity also 
significantly improved [98].

A γ-secretase inhibitor and N-methyl dihydro-
pyridine fragment were combined to form a 
chemical delivery system prodrug. After admin-
istration, the 2 h brain concentration reached 
345 ng·g-1, which was about 1.5 times that of 
the original compound (240 ng·g-1) [99]. 
Therefore, prodrug modification by chemical-
delivery systems can effectively improve the 
cerebral permeability of compounds, and 
increase their intracerebral concentration 
[100-102].

Strategies for changing a compound’s lipid 
solubility

Most metabolic enzymes in the body have 
active pockets that bind to lipophilic groups. By 
reducing a compound’s lipophilic properties, 
the binding activity between compounds and 
metabolic enzymes is weakened, thus delaying 
the metabolism of compounds in vivo and 
improving metabolic stability [103-105]. The 

Table 1. In vivo models and potential biomarkers for ATG4B inhibition in cancer
Cancer Type Therapeutic Modality In Vivo Model Biomarker
Breast cancer siRNA ATG4B/Trastuzumab MCF7 xenograft HER2, ATG4B
Colorectal cancer Tioconazole HCT-116 Xenograft none
Colorectal cancer S130/Caloric restriction HCT-116 Xenograft none
Colorectal cancer UAMC2526/oxaliplatin HT-29 Xenograft LC3 conversion
Glioblastoma NSC185058/Chloroquine M83 glioma xenograft none
Lung adenocarcinoma Doxicylcin-inducible ATG4B C74A GEMM K-Ras mutation
Osteosarcoma NSC185058/starvation SAOS Xenograft none
Pancreatic ductal adenocarcinoma Doxicyclin-inducible ATG4B C74A GEMM K-Ras mutation
Prostate cancer ATG4B C74A/doxorubicin PC-3 Xenograft none
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anti-thrombin factor Xa inhibitor, developed by 
the Takeda company of Japan, has a strong 
inhibitory activity of FXa (IC50 = 28 nmol·L-1) 
[106]. Although this compound has strong bio-
logical activity, it has a very high elimination 
rate in human liver microsomes, reaching 
91.2% [107].

By replacing the seven-membered lactam ring 
with a six-membered and five-membered lac-
tam ring, the anti-thrombin factor Xa inhibitor 
has reduced fat solubility, a reduced elimina-
tion rate, and an increased activity; when the R 
group was replaced by a six-member cyclourea 
group, the obtained compound, TAK-442, had 
the strongest inhibitory activity and the best 
metabolic stability of any known anti-thrombin 
factor Xa derivatives, and is currently being 
tested in a phase-II clinical study [108].

As another example, a powerful phosphodies-
terase inhibitor, PDE4D, developed by Novartis, 
has a solubility of only 2.3 μg·mL-1, and bioavail-
ability of only 8% in rats due to its large aro-
matic conjugate region [109, 110]. Researchers 
succeeded in replacing one of its benzene rings 
with a cyclohexane or piperidine ring, while 
removing the other oxadiazole ring and intro-
ducing various substituents [111]. The solubili-
ty of the resulting compounds improved greatly. 
PDE4D is an antibacterial drug with good bacte-
riostatic activity and a strong inhibitory effect 
on topoisomerase IV [112]. The inhibitory activ-
ity (IC50) of hERG is 3 μmol-1. Other compounds 
were obtained by replacing quinolines with qui-
nolones with greater polarity. The lipid-soluble 
logD7.4 decreased by 0.6-1.6 units, and hERG 
inhibition decreased significantly (IC50 > 30 
μmol-1) [113]. Through quantitative structure-
activity relationship analysis, Levoin has been 
shown to have a lipid solubility (clogP, clogD, or 
polar surface area PSA) and aromatic proper-
ties that are closely related to hERG inhibitory 
activity [114]. The fat-soluble aromatic ring in 
the drug molecule generates a π-π hydrophobic 
effect with the hERG potassium channel. 
Reducing liposolubility of molecules, through 
methods such as introducing electron-with-
drawing groups or polar groups on aromatic 
rings of drug molecules, or replacing benzene 
rings with heterocyclic rings through bioisoster-
ism, can effectively hinder the hydrophobic 
effect and reduce hERG-inhibiting activity 
[115].

Adenosine receptor A2A antagonists can be 
used to treat Parkinson’s disease [116]. The 
A2A antagonist lead compound reported by 
Merck (IC50 = 5.5 nmol·L-1) has a good selectiv-
ity to adenosine receptor A1 but has strong 
hERG inhibitory activity (IC50 = 1.5 μmol·L-1) 
[117]. In terms of useful strategies for liposolu-
bility reduction, compounds a and b were 
obtained by replacing the end benzene ring 
with pyrazole, and the lipid-soluble clogP of the 
resulting compounds decreased by 1.9 and 0.7 
units, respectively, whereas hERG inhibitory 
activity decreased significantly (IC50 > 60 
μmol·L-1) while maintaining affinity with A2A 
receptors and selectivity to A1 receptors [118].

Broad-spectrum antimicrobial agents have 
good bacteriostatic activity and have a strong 
inhibitory effect on topoisomerase IV. Their 
hERG inhibitory activity (IC50) is 3 μmol·L-1 
[119]. When new compounds were obtained by 
replacing quinolines with quinolones with great-
er polarity, lipid-soluble logD7.4 decreased, and 
hERG inhibitory activity decreased significantly 
[120].

Bioisosterism strategies

Many compounds contain metabolizable 
groups. One important strategy to improve met-
abolic stability, reduce potential toxicity, and 
improve plasma stability of a compound is the 
principle of bioisosterism, in which metaboliz-
able groups are replaced with stable bioiso-
steres [121-123]. The compound 5-(2,8-bis(tri- 
fluoromethyl)quinolin-4-yloxymethyl)isoxazole-
3-carboxylic acid ethyl ester has activity again- 
st Mycobacterium tuberculosis (minimum 
inhibitory concentration [MIC] = 0.9 μmol·L-1), 
and the compound is prone to being deactivat-
ed by CYP catalytic oxidation and ester hydroly-
sis [124].

To effectively reduce the compound’s oxidative 
metabolic rate, the linking group between quin-
oline and isoxazole is structurally optimized, 
containing a trans-double bonded compound 
[125]. A bioisosterism strategy not only enhanc-
es antibacterial activity, but also improves 
pharmacokinetics. The liver metabolites of 
nimesulide, especially nitroreductive products, 
are closely related to nimesulide’s toxicity 
[126]. Aromatic nitrogroup products can be oxi-
dized into quinone imines and electrophilic 
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products by the P450 enzyme and monoamine 
oxidase in human liver microbodies [127]. 
Electrophilic products can further covalently 
bind to some strong nucleophilic substances 
(such as proteins and DNA) in the body, which 
may lead to the production of hepatotoxicity.

In subsequent research on the modification of 
nimesulide, it was found that arranging the 
nitrobenzene structure into a pyridine ring 
structure improved enzymatic activity and 
selectivity, and also maintained anti-inflamma-
tory activity in rats [128]. The successful appli-
cation of this strategy avoids aromatic nitro 
structures and significantly reduces the expect-
ed toxicity risk of lead compounds. Novel P2X7 
receptor antagonists have been developed by 
Roche Pharmaceuticals. This lead compound is 
unstable in human plasma, causing 50% of the 
prototype drug to be degraded after 4 h of plas-
ma incubation [129]. Therefore, the research-
ers replaced the urea group in the compound 
structure with an amide group to obtain a new 
compound that greatly improved plasma stabil-
ity while maintaining its inhibitory activity on 
P2X7 receptors (IC50 = 23 nmol·L-1) [130].

In the process of drug discovery, we often 
encounter problems with lead compounds, 
such as poor medicinal properties, poor phar-
macokinetic characteristics, toxic effects, and 
side effects. To improve the drug potency of 
lead compounds and to accelerate the process 
of new drug development, structural optimiza-
tion of lead compounds has become a key link 
in current drug development [131-134]. 
Effective approaches to optimize lead com-
pound structure include the rational use of 
closed metabolic sites, skeleton modifications, 
reduction of vigilant structural reactivity, chiral 
changes and methyl strategies to change con-
formation and increase molecular rigidity to 
achieve conformational restriction, as well as 
changing the water-solubility and fat-solubility 
of lead [135, 136]. The flexible application of 
the above methods can improve the pharmaco-
kinetic characteristics of lead compounds, pro-
long the time of drug action in vivo, enhance 
metabolic stability, improve bioavailability, 
reduce hERG inhibitory activity, reduce adverse 
effects on the heart, and reduce adverse 
effects on the liver, kidneys, and other organs 
[137-139].

Research and development of mimetic small-
molecule drugs

Imitative small-molecule drugs are also known 
as “me-too” drugs. This kind of drug is used to 
conduct full research on the pharmacological, 
toxicological, metabolic, and clinical effects 
and mechanisms of known drugs. Imitative 
small molecule drugs are then used as the lead 
compound for structural modifications to obtain 
new drugs [140-142]. In addition, new chemical 
entities with the same mechanism of action, or 
with similar or enhanced effects or certain 
characteristics, are developed to avoid patent 
protection of the original drug [143]. This inno-
vative approach to research and develop small-
molecule drugs is known as the “me-too” strat-
egy. In small-molecule drug research and devel-
opment, the “me-too” strategy is carried out 
from three aspects: bioelectronic-equivalent 
row replacement, prodrug design, and chiral 
drug research [144-146].

Replacement with bioelectronic isosteres

The number of electrons in the outermost layer 
of elements within the same family in the peri-
odic table is equal. Additionally, the physical 
and chemical properties of elements within the 
same family are similar to one another. This 
relationship is extended to atoms, ions, or mol-
ecules of equal outer electrons, which are 
called electron isosteres [147]. When the physi-
cal and chemical properties of the atoms, 
groups, or molecules under consideration are 
associated with biological activities, groups 
with similar physical and chemical properties 
and the same valence bonds capable of pro-
ducing similar biological activities are called 
bioisosteres [148-150]. For example, replacing 
the imidazole ring with a furan ring and thiazole 
ring yields ranitidine and famotidine, respec-
tively, and the H2 receptor antagonism of these 
drugs is stronger than that of cimetidine [151]. 
The use of bioisosteres to replace a group of 
lead compounds one by one to obtain a series 
of new compounds is a classic method for phar-
maceutical chemists to study drugs [152].

Prodrug design

A prodrug refers to a compound that has little 
or no activity in vitro and releases an active 
substance after the action of an enzyme or 
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non-enzyme in the body to ultimately produce a 
pharmacological effect [153]. For example, lac-
tam antibiotics have a carboxyl group in posi-
tion 2, and due to strong polarity and acidity, 
oral absorption is poor [154]. Ampicillin, in the 
form of ions in the gastrointestinal tract, has a 
bioavailability of only 20%-30% [155]. App- 
lication of a prodrug design to yield pivampicil-
lin, which is obtained by esterification of car-
boxylic acid, yields increased fat solubility and 
an improved bioavailability of 95%. Pivampicillin 
has an in vivo antibacterial effect that is two to 
four times greater than that of ammonia benzyl 
ester, and yields a high blood drug concentra-
tion and short half-life [156]. When carbenicillin 
is taken orally, it is easy broken down by gastric 
acid in the stomach, leading to an unstable 
drug effect. The carboxyl esterification of the 
side chain to carindacillin yields a drug that is 
not easily decomposed by gastric acid, and 
thus can be taken orally, with significant 
improvement in bioavailability [157].

Chiral drug design

Stereochemistry has occupied a great role in 
the manufacture and development of pharma-
ceuticals. Chiral properties play an important 
role in the determination of pharmacological 
actions of drugs [158]. In recent years, there 
has been considerable interest in chiral sepa-
ration to isolate and examine both enantio-
mers. For example, the specific drug, omepra-
zole, developed by Astmzenaca for the treat-
ment of gastric ulcers, is the world’s first pro-
ton-pump inhibitor that has undergone clinical 
application [159]. The S atom in the omepra-
zole molecule is an asymmetric atom. The l-iso-
mer (esomeprazole) obtained through chiral 
design of the drug has a slow metabolism in the 
body and is repeatedly generated through inter-
nal circulation, leading to a higher blood  
concentration and longer maintenance time 
[160-163].

Known small-molecule drug-extension re-
search and development

To shorten development cycles, reduce risks, 
and improve the success rates of small-mole-
cule drugs, the “new use of old medicine” has 
attracted increasing attention from research-
ers [164]. “New use of old medicine” refers to 
the development of new indications, or new 
uses, of drugs that have been marketed for 

other purposes previously [165]. Owing to the 
detailed pharmacokinetics and safety data of 
drugs already on the market, the development 
of new applications can be quickly evaluated in 
phase-II clinical trials, which can save approxi-
mately 40% on the costs of research and devel-
opment and can shorten the development cycle 
[166-168]. For example, aspirin has expanded 
from a conventional anti-inflammatory analge-
sic to a small-molecule drug that can dilute 
blood, prevent thrombosis, and reduce the inci-
dence of stroke [169]. The original methoxypy-
rimidine, for the treatment of pneumonia, was 
approved for the treatment of AIDS [170].

The pregnancy drug mifepristone has since 
been approved for severe psychiatric depres-
sion. Thalidomide is a synthetic glutamic acid 
derivative that was once called a reaction stop, 
and has a calming and antiemetic effect [171]. 
In 1998, thalidomide was approved by the FDA 
for the treatment of ENL. In 2006, the FDA 
approved its combination with dexamethasone 
for the treatment of multiple myeloma (MM) 
[172]. Metformin, a biguanide compound from 
Galega officinalis, has been used to treat hyper-
glycemia since the 1950s and is one of the 
most widely prescribed diabetic drugs. Nu- 
merous studies have shown that metformin, in 
addition to being used in the treatment of dia-
betes, can also be used to treat off-label dis-
eases such as polycystic ovary syndrome, non-
alcoholic steatohepatitis, and HIV-related met-
abolic abnormalities [173].

In tumor therapy, the mechanism of metformin 
is becoming increasingly clear, and the applica-
tion of metformin in the field of non-diabetic 
diseases is increasing. A series of promising 
early clinical trials are underway, making it high-
ly likely that this classic drug will be turned into 
a novel anticancer drug [174].

New technology for small-molecule drug dis-
covery

Drug discovery in the 1960s and 1970s relied 
primarily on cell and animal models that mostly 
used phenotypic screenings [175-177]. After 
entering the 21st century, with the rapid devel-
opment of computational biology, bioinformat-
ics, molecular biology, and chemical biology, 
the molecular targets of small-molecule drugs 
have since been elucidated [175-177]. The 
Nikolovska-Coleska lab conducted a high 
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throughput screening (HTS) campaign with a 
library of 53,000 synthetic small molecules to 
identify Mcl-1 inhibitors, which led to the identi-
fication of UMI-59 (Ki = 1.55 μM). This mole-
cule inhibited Mcl-1/Bid interaction and dis-
played greater selectivity toward Mcl-1 com-
pared to other Bcl-2 proteins in the FP assay. 
Additionally, the genome project and proteome 
project are new approaches for drug design. 
The application of computational biology, bioin-
formatics, molecular biology, and chemical biol-
ogy makes it more efficient to discover novel 
targets for drug action [178].

Methods such as selecting targets for impor-
tant diseases, designing lead compounds, and 
optimizing lead structures using combinatorial 
chemistry and high-throughput screening meth-
ods have recently been developed [179-181]. In 
2009, the discovery and subsequent clinical tri-
als of an NAE inhibitor, MLN4924 (pevone-
distat), set a milestone that validated the ned-
dylation pathway as an effective anticancer 

target. Thereafter, there has been continuous 
effort to seek more neddylation inhibitors.

Now, a decade later, high-throughput screen-
ing, virtual screening, as well as structural-
based design have yielded a diverse collection 
of small-molecule inhibitors of neddylation, and 
some have shown promising anticancer activi-
ties (Figure 4). Therefore, high-throughput 
screening, virtual screening, structure-based 
drug design, and optimization of lead com-
pounds have become common techniques for 
small-molecule drug discovery.

Outlook

In conclusion, the creation of novel structures 
and biologically active drugs via the basic path-
ways of small-molecule drug discovery and the 
instant identification of new chemical entities 
(NCEs) are highly respected and lucrative 
approaches in the medical community. How- 
ever, this kind of small-molecule drug research 

Figure 4. The first-in-class NAE inhibitor, MLN4924. A scheme of the mechanisms of MLN4924 regarding to its 
therapeutic efficacy and side effect. 
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is difficult to develop, and the risks are often 
great. Further research and development of 
known drugs can extend to small-molecule 
drug research and development. In the estab-
lishment of a compound library, high-through-
put screening based on a certain molecular 
target can obtain the complex crystal structure 
of small molecules and target proteins, and 
many classic drugs can be exploited to have 
novel uses for the treatment of other diseases 
and disorders. Once life science enters the 
post-genomic era, scientists will be able to find 
and discover new genes from a large number of 
gene-sequencing results and deeply study their 
functions and regulatory networks. Such an 
approach will further improve the quality and 
efficiency of innovative drug research through a 
large number of bioinformational databases, 
compound-information databases, biochips, 
and other high-tech technologies. However, 
human biology is so complex that drug discov-
ery has not been as efficient as might be 
expected. The cost and efficiency of clinical tri-
als are rate-limiting steps in drug discovery. 
Due to these factors, the significance of new 
technologies in drug discovery can be lever-
aged in terms of the following three strategies: 
(1) if a drug target is correct, find the most 
effective regulation mode and molecule; (2) 
demonstrate the effectiveness of the target as 
early as possible; and (3) take advantage of the 
fact that effective drugs can be found even 
when a clear target is not identified.
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