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Abstract: Ovarian cancer is one of the most common cancers in women and the second most common cause of 
gynecologic cancer death in women worldwide. While ovarian cancer is highly heterogeneous in histological sub-
types and molecular genetic makeup, epithelial ovarian cancer is the most common subtype. The clinical outcomes 
of ovarian cancer largely depend on early detection and access to appropriate surgery and systemic therapy. While 
combination therapy with platinum-based drugs and paclitaxel (PTX) remains the first-line systemic therapy for ovar-
ian cancer, many patients experience recurrence and die of progressive chemoresistance. Thus, there is an unmet 
clinical need to overcome recurrent disease due to resistance to chemotherapies of ovarian cancer. Here, we inves-
tigated whether BRAF inhibitors (BRAFi) could sensitize PTX-resistant ovarian cancer cells to PTX, and thus would 
overcome the resistance to chemotherapies. We found that BRAF and several members of the RAS/MAPK pathways 
were upregulated upon PTX treatment in ovarian cancer cells, and that BRAF expression was significantly elevated 
in the PTX-resistant ovarian cancer cells. While the BRAFi vemurafenib (VEM) alone did not cause any significant cy-
totoxicity in PTX-resistant ovarian cancer cells, VEM significantly enhanced PTX-induced growth inhibition and apop-
tosis in a dose-dependent manner. Furthermore, VEM and PTX were shown to synergistically inhibit tumor growth 
and cell proliferation of PTX-resistant human ovarian cancer cells in vivo. Collectively, these findings strongly suggest 
that BRAFi may be exploited as synergistic sensitizers of paclitaxel in treating chemoresistant ovarian cancer. 
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Introduction

Ovarian cancer is one of the most common can-
cers in women and ranks third after cervical 
and uterine cancer worldwide [1-6]. Even 
though ovarian cancer has a lower prevalence 
in comparison with breast cancer, it is three 

times more lethal than breast cancer, and is the 
second most common cause of gynecologic 
cancer death in women around the world [1, 
4-8]. Due to the lack of effective early detection 
strategies, over 80% of ovarian cancers are 
diagnosed with potential metastatic lesions. 
Ovarian tumors usually originate from one of 
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three cell types: epithelial cells, stromal cells, 
and germ cells. Epithelial ovarian cancer (EOC) 
is the most common subtype while EOC itself is 
composed of a diverse group of tumors that 
can be further classified into five main histo-
logical subtypes on the basis of distinctive mor-
phologic and genetic features including: high-
grade serous (HGSOC; 70%), endometrioid 
(ENOC; 10%), clear cell (CCOC; 10%), mucinous 
(MOC; 3%), and low-grade serous (LGSOC; <5%) 
[1, 5, 6, 9-11]. It has been shown that noncod-
ing RNAs and cancer stem cells may contribute 
to the progression and metastasis of ovarian 
cancers [12-15]. 

The clinical outcomes of ovarian cancer are 
rather complicated, largely depending on early 
diagnosis and access to appropriate surgery 
and systemic therapy [1]. Common clinical 
management of ovarian cancer includes deb-
ulking surgery, combination chemotherapy, ra- 
diation therapy, and/or antiangiogenic agents 
in patients with suboptimally debulked and 
stage IV disease, as well as currently evolving 
therapies such as folate receptor targeting and 
immunotherapy [1, 5, 6, 9-11]. Major progress 
in maintenance therapy has been made by 
incorporating recently approved poly (ADP-
ribose) polymerase (PARP) inhibitors in a recur-
rent setting and in a first-line setting among 
women with BRCA1/BRCA2 mutations [16,  
17]. Combination therapy with platinum-based 
drugs (e.g., cisplatin, carboplatin, or oxaliplatin) 
and paclitaxel (PTX) remains the first-line sys-
temic therapy for ovarian cancer [1]. Nonethe- 
less, many patients experience recurrence 
within 12-24 months and succumb to progres-
sively chemotherapy-resistant disease [5, 18]. 
Even though the five-year survival rate for ovar-
ian cancer patients has improved over the past 
two decades, the overall cure rate remains 
approximately 30% [5, 18]. Clinical manage-
ment of ovarian cancer has met many challeng-
es, which is in part because the origin and 
pathogenesis of ovarian cancer are poorly 
understood [6]. Thus, any significant improve-
ment in long-term survival will hinge on trans-
lating our understanding of molecular and cel-
lular characteristics of ovarian cancers into 
personalized treatment strategies, optimizing 
methods of screening or early detection, and 
developing novel therapeutics [5, 9-11, 19]. 

Here, we investigated whether BRAF inhibitors 
(BRAFi) can sensitize paclitaxel (PTX)-resistant 

ovarian cancer cells to PTX in order to over-
come the recurrent disease due to resistance 
to chemotherapies. We found that BRAF was 
upregulated by PTX in ovarian cancer cells, as 
well as elevated in PTX-resistant ovarian can-
cer cells. While the BRAFi vemurafenib (VEM) 
alone did not cause any significant cytotoxi- 
city in PTX-resistant ovarian cancer cells, VEM 
was shown to effectively enhance PTX-induced 
growth inhibition and apoptosis in a dose-
dependent manner. Furthermore, VEM and PTX 
were shown to synergistically inhibit tumor 
growth and cell proliferation of PTX-resistant 
human ovarian cancer cells in vivo. Thus, these 
findings strongly suggest that BRAFi may be 
exploited as synergistic sensitizers of paclitaxel 
in treating chemoresistant ovarian cancer. 

Materials and methods

Cell culture and chemicals

Human ovarian cancer cell lines OVCAR8, Hey- 
A8, and the paclitaxel (PTX)-resistant HeyA8-
MDR were kindly provided by Dr. Ernest Leng- 
yel of The University of Chicago. The PTX-
resistant OVCAR8-PR29A and OVCAR8-PR29B 
lines were independently established in the 
authors’ laboratory through PTX dose-escalat-
ing selection process. All cell lines were main-
tained in Dulbecco’s Modified Eagle Medium 
(DMEM) with 10% fetal bovine serum (FBS, 
Gemini Bio-Products, West Sacramento, CA), 
100 U/mL penicillin, and 100 µg/mL strepto-
mycin at 37°C in 5% CO2 as described [20-24]. 
Chemicals paclitaxel (PTX) and vemurafenib 
(VEM) (aka, PLX4032, RG7204, or RO5185426; 
marketed as Zelboraf) were purchased from 
Selleckchem (Houston, TX). Unless indicated 
otherwise, all other chemicals were purchased 
from either Sigma-Aldrich (St. Louis, MO) or 
Fisher Scientific (Pittsburgh, PA).

Crystal violet staining

Crystal violet staining assay was conducted as 
described [25-28]. Briefly, subconfluent HeyA8-
MDR, OVCAR8-PR29A and/or OVCAR8-PR29B 
cells were treated with varied concentrations of 
DMSO, PTX, and/or vemurafenib (VEM). At 72 h 
after treatment, the cells were washed with 
PBS and stained with 0.5% crystal violet/for-
malin solution at room temperature for 20-30 
min. The stained cells were rinsed with tape 
water, air-dried, and documented by a photo 
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scanner. The scanned images were quantita-
tively analyzed by using the ImageJ software.

WST-1 cell proliferation assay

Cytotoxicity was assessed by using Premixed 
WST-1 Reagent (Clontech, Mountain View, CA) 
as described [22, 29-32]. Briefly, subconfluent 
HeyA8-MDR, OVCAR8-PR29A and/or OVCAR8-
PR29B cells were seeded in 96-well plates, and 
were treated with different concentrations of 
PTX and/or VEM, or DMSO control. At the indi-
cated time points, the freshly prepared WST-1 
Working Mix was added to each well, followed 
by incubating at 37°C for 2 h and reading at 
450 nm using a microplate reader (BioTek 
EL800, Winooski, VT). Each assay condition 
was done in triplicate. 

Chou-Talalay drug combination index analysis

The combination effects between paclitaxel 
and vemurafenib were calculated with the 
Chou-Talalay method [20, 28, 33, 34]. Briefly, 
the dose-dependent WST-1 assay data obta- 
ined above were analyzed with the CompuSyn 
software (ComboSyn, Inc.). The calculated com-
bination index (CI) theorem of Chou-Talalay 
analysis usually yields a quantitative definition 
for additive effect (CI = 1), synergism (CI<1), or 
antagonism (CI>1) in drug combinations. 

RNA isolation and quantitative PCR analysis

Total RNA was extracted by using the TRIZOL 
reagent (Invitrogen, Carlsbad, CA) according to 
the manufacturer’s protocol and subjected to 
reverse transcription reactions using hexam- 
er and M-MuLV Reverse Transcriptase (New 
England Biolabs, Ipswich, MA). The resultant 
cDNA products were diluted 10- to 100-fold 
and used as PCR templates. PCR primers were 
designed by using the Primer3 Plus program 
[35]. All qPCR primer sequences are listed in 
Supplementary Table 1. The quantitative PCR 
analysis was carried out by using our previously 
optimized TqPCR protocol [23, 36-43]. Briefly, 
the 2x SYBR Green qPCR reactions (Bimake, 
Houston, TX) were set up according to manu-
facturer’s instructions. The cycling program 
was modified by incorporating 4 cycles of 
touchdown steps prior to the regular cycling 
program. GAPDH was used as a reference 
gene. All sample values were normalized to 
GAPDH expression by using the 2-ΔΔCt method. 

Each qPCR assay condition was done in 
triplicate. 

Apoptosis analysis (Hoechst 33258 staining)

The Hoechst 33258 apoptosis staining assay 
was carried out as previously described [44-
49]. Briefly, exponentially growing OVCAR8-
PR29B and HeyA8-MDR cells were treated with 
DMSO, PTX and/or VEM. At 48 h post treat-
ment, cells were collected, fixed and stained 
with the Magic Solution (10× stock: 0.5% 
NP-40, 4% formaldehyde, 10 μg/ml Hoechst 
33258 in PBS). Apoptotic cells were examined 
and recorded under a fluorescence micro-
scope. Each assay condition was done in tripli-
cate. The average numbers of apoptotic cells 
were calculated by counting apparent apoptotic 
cells in at least ten random fields at 100× mag-
nification for each assay condition. 

Xenograft tumor model of human ovarian can-
cer cells

The use and care of animals were approved by 
the Institutional Animal Care and Use Com- 
mittee. The xenograft tumor model was estab-
lished as previously described [49-54]. Briefly, 
exponentially growing HeyA8-MDR cells were 
collected, resuspended in PBS at 107 cells/ml, 
and injected subcutaneously into the flanks of 
athymic nude mice (Harlan Laboratories, 6-8 
week old, female, 106 cells per injection, and 4 
sites per mouse). At three days post injection, 
the mice were divided into four groups (n = 4 
per group): PTX group, the animals were treated 
with PTX (10 mg/kg body weight); VEM group, 
the animals were treated with vemurafenib (10 
mg/kg body weight); PTX/VEM group, the ani-
mals were treated with PTX and VEM (each at 
10 mg/kg body weight); and DMSO control 
group, the animals were treated with DMSO. All 
drugs were given intraperitoneally daily. Tumor 
growth was monitored with caliper measure-
ment at the indicated time points. The mice 
were sacrificed at the endpoint of day 18. The 
subcutaneous tumor masses were retrieved for 
histologic evaluation and immunohistochemi-
cal analysis.

Hematoxylin and Eosin (H & E) and immuno-
histochemical (IHC) analysis

H & E staining was carried out as described 
[55-59]. Briefly, the retrieved tissues were fixed 
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with 10% buffered formalin, decalcified and 
embedded in paraffin. Serial sections of the 
embedded specimens were deparaffinized and 
subjected to H & E staining. Results were do- 
cumented under a bright field microscope. 
Representative images are shown. 

The IHC analysis was carried out as described 
[60-63]. Experimentally, the tissue sections 
were deparafinized, rehydrated, and subject- 
ed to IHC staining with the PCNA antibody 
(Santa Cruz Biotechnology). Minus primary anti-
body and control IgG were used as negative 
controls. 

Statistical analysis

All quantitative assays were performed in tripli-
cate and/or in three independent batches. 
Data were expressed as mean ± standard devi-
ation. Statistical significances were determined 
by one-way analysis of variance and the Student 
t-test. Statistical analysis was performed using 
the SPSS software version 19. A p-value <0.05 
was considered statistically significant.

Results

BRAF/RAS/MAPK pathways are up-regulated 
in PTX-resistant human ovarian cancer cells

We first analyzed the status of the RAS/MAPK 
signaling pathways in three PTX-resistant ovar-
ian cancer cell lines. The HeyA8-MDR line is a 
previously established paclitaxel-resistant line 
[64, 65] and conferred a modest PTX resis-
tance (up to 200 nM PTX) (Figure 1Aa). We also 
conducted dose-escalating selection experi-
ments and established two independent PTX-
resistant lines from the sensitive OVCAR8 cells, 
designated as OVCAR8-PR29A and OVCAR8-
PR29B, in which OVCAR8-PR29A cells con-
ferred a robust PTX resistant (up to 200 nM 
PTX), whereas OVCAR8-PR29B cells were the 
most resistant line among the three PTX resis-
tant lines (up to 20 µM PTX) (Figure 1Ab and 
1Ac). Thus, the three PTX-resistant lines may 
represent the diverse features of PTX resis-
tance in human ovarian cancer cells. 

We analyzed the expression of essential signal-
ing mediators of the RAS/MAPK pathways. The 
qPCR analysis revealed that the expression of 
IGF1R, KRAS, BRAF, MEK1 and ERK1 was sig-
nificantly upregulated upon PTX treatment, 
while the expression of NRAS and MEK2 was 

down-regulated by PTX in both parental OVC- 
AR8 and PTX-resistant OVCAR8-PR29B cells, 
respectively (Figure 1Ba). Similar results were 
obtained in HeyA8 and HeyA8-MDR cells except 
that IGF1R, KRAS, MEK1 and ERK1 were not 
upregulated by PTX in the parental HeyA8 cells 
while MEK2 was upregulated in HeyA8-MDR 
cells (Figure 1Bb). Noticeably, BRAF was not 
only upregulated by PTX in the test ovarian can-
cer lines but also significantly elevated in both 
PTX-resistant lines, suggesting that BRAF acti-
vation may be associated with PTX treatment. 

BRAFi vemurafenib (VEM) sensitizes paclitaxel 
(PTX) in PTX-resistant human ovarian cancer 
cells

We next tested whether human PTX-resistant 
ovarian cancer cells were sensitive to BRAFi 
VEM. In our preliminary studies, we found that 
the lethal concentrations for the parental ovar-
ian cancer lines HeyA8 and OVCAR8 were 50 
nM and 20 nM, respectively (data not shown). 
As shown in Figure 2, the HeyA8-MDR cells and 
OVCAR8-PR29A were resistant to PTX and sur-
vived well at 200 nM and 600 nM, respectively, 
whereas the OVCAR8-PR29B cells were resis-
tant to PTX at up to 10 µM. Using these three 
PTX-resistant lines, we found that no significant 
cytotoxicity was observed in HeyA8MDR (Figure 
2A), OVCAR8-PR29A (Figure 2B) and OVCAR8-
PR29B (Figure 2C and 2D) treated with up to 
10 µM of VEM alone. However, in the presence 
of 8 µM VEM, HeyA8-MDR cells exhibited sig-
nificant cytotoxicity for PTX at as low as 50 nM, 
and were completely killed at 200 nM (Figure 
2Aa and 2Ab). Significant cytotoxicity was 
observed in OVCAR8-PR29A cells in presence 
of 400 nM PTX and 2 µM VEM, or 200 nM PTX 
and 8 µM VEM (Figure 2Ba and 2Bb). Similarly, 
in the more resistant OVCAR8-PR29B cells,  
significant cytotoxicity was observed at 5 µM 
PTX and 10 µM VEM, both in crystal violet stain-
ing and colony formation assays (Figure 2Ca, 
2Cb, 2Da and 2Db). Collectively, these results 
strongly suggest that the BRAFi VEM, while 
ineffective alone, may significantly sensitize 
PTX-resistant ovarian cancer cells to PTX.

BRAFi vemurafenib (VEM) and paclitaxel (PTX) 
synergistically inhibit cell proliferation and in-
duce apoptosis in PTX-resistant human ovarian 
cancer cells

We sought to test whether VEM and PTX would 
act synergistically to inhibit cell proliferation of 
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Figure 1. Multiple components of BRAF/KRAS/MAPK pathways are up-regulated in paclitaxel (PTX)-resistant human 
ovarian cancer cells. (A) Characterization of three PTX-resistant human ovarian cancer lines. Subconfluent HeyA8 
and HeyA8-MDR (a), OVCAR8 and OVCAR8-PR29A (b), and OVCAR8 and OVCAR8-PR29B (c) cells were treated with 
DMSO or PTX at the indicated concentrations. At 72 h post treatment, cells were fixed and subjected to crystal vio-
let staining. Representative results are shown. PA, parental line; MDR, HeyA8-MDR; PR29A, OVCAR8-PR29A; and 
PR29B, OVCAR8-PR29B. (B) qPCR analysis of the expression of essential signaling mediators of the RAS/MAPK 
pathways. Subconfluent OVCAR8-PR29B and its parental OVCAR8 (a), or HeyA8-MDR and its parental HeyA8 (b) 
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cells were treated with DMSO or 10 µM PTX and/or 10 µM VEM. At 48 h, total RNA was isolated from the cells and 
subjected to qPCR analysis using primers specific for the indicated genes. GAPDH was used as a reference gene. 
All assays were done in triplicate. “*” P<0.05; “**” P<0.01 compared with that of the parental cells treated with 
DMSO group.

Figure 2. BRAFi Vemurafenib (VEM) sensitizes paclitaxel (PTX) in PTX-resistant human ovarian cancer cells. Subcon-
fluent HeyA8MDR (A), OVCAR8-PR29A (B) and OVCAR8-PR29B (C and D) cells were seeded into 12 or 24-well cell 
culture plates, and treated with DMSO, paclitaxel (PTX) and/or vemurafenib (VEM) at the indicated concentrations 
for 72 h. The cells were fixed and subjected to crystal violet staining. For the OVCAR8-PR29B cells, in addition to 
conventional crystal staining assay (C), the colony formation assay was also carried out (D). All treatment conditions 
were done in triplicate. Representative results are shown. The staining results were further quantitatively analyzed 
with ImageJ software. “**” P<0.01, compared with that of the DMSO group.

the PTX-resistant ovarian cancer cells through 
drug combination analysis. Using the quantita-

tive WST-1 cell proliferation assay, we found 
that VEM significantly enhanced PTX-induced 
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cytotoxicity in a dose-dependent manner in 
both OVCAR8-PR29A (Figure 3A) and HeyA8-
MDR cells (Figure 3C). The Chou-Talalay drug 
combination index analysis revealed that vast 
majority of the drug combination data points 
fell into the synergism effect for both OVCAR8-
PR29A (Figure 3B) and HeyA8-MDR cells 
(Figure 3D). Similar results were obtained for 
OVCAR8-PR29B cells (data not shown). Con- 
sistent with the synergism analysis results, 
VEM was shown to significantly enhance PTX-
induced apoptosis in OVCAR8-PR29B cells 
(Figure 4A and 4B). Collectively, these results 
demonstrate that BRAFi VEM acts synergisti-
cally with PTX to inhibit cell proliferation and 
induces apoptosis in PTX-resistant ovarian can-
cer cells.

BRAFi vemurafenib (VEM) and paclitaxel (PTX) 
synergistically inhibit tumor growth of PTX-
resistant human ovarian cancer cells

Lastly, we tested whether VEM would enhance 
PTX cytotoxicity and inhibit tumor growth of 

PTX-resistant ovarian cancer cells. When 
HeyA8MDR cells were subcutaneously injected 
into the nude mice and treated with PTX, and/
or VEM, the tumor growth rate significantly 
decreased in the PTX and VEM combined ther-
apy group, compared with that of the DMSO 
control group after two weeks (Figure 5A), 
which is confirmed by the macrographic images 
and average tumor weights of the retrieved 
tumor samples although the average tumor 
weight decreased in the PTX or VEM treatment 
along group (Figure 5Ba and 5Bb). Histologic 
analysis revealed that the tumor masses 
retrieved from the PTX/VEM combined treat-
ment group exhibited a significantly decrease 
in cellularity and an increase in necrotic tissue, 
compared with that of the DMSO control group, 
as well as the PTX or VEM alone group (Figure 
5C). Immunohistochemical analysis of the cell 
proliferation marker PCNA further revealed 
sparsely positive staining in the tumor tissues 
retrieved from the PTX/VEM combined treat-
ment group, while strong positive staining was 

Figure 3. BRAFi Vemurafenib (VEM) and paclitaxel (PTX) synergistically inhibit cell proliferation of PTX-resistant 
human ovarian cancer cells. Subconfluent OVCAR8-PR29A (A and B) and HeyA8MDR (C and D) cells were seeded 
into 96-well cell culture plates, and treated with DMSO, paclitaxel (PTX) and/or vemurafenib (VEM) at the indicated 
concentrations. At 72 h after treatment, WST-1 working mix was added to the cells and incubated for 2 h before 
subjected to absorbance reading at 450 nm (A and C). The WST-1 data were further subjected to Chou-Talalay drug 
combination index analysis (B and D). All assays were done in triplicate. “**” P<0.01 compared with that of the 
DMSO group at respective VEM concentrations.
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observed in the DMSO control group, to lesser 
extent in the PTX or VEM alone group (Figure 
5D). Collectively, these in vivo results strongly 
suggest that VEM may synergistically enhance 
the PTX’s cytotoxic activity in PTX-resistant 
ovarian cancer cells. 

Discussion

PTX belongs to a class of taxanes with microtu-
bule stabilizing ability, and together with plati-
num based therapy, remains as a part of the 
standard care for ovarian cancer management 
[5, 9-11, 19, 66]. In addition to stabilizing 
microtubules, PTX has been shown to activate 
multiple signaling pathways, which may be 
associated with proapoptotic signaling, includ-

cells in vivo. It is noteworthy that, while we 
focused on VEM in this study, other BRAF inhibi-
tors, such as the FDA-approved Dabrafenib 
(Tafinlar) and Encorafenib (Braftovi), may also 
be analyzed for their ability to sensitize the  
chemoresistant ovarian cancer cells to PTX, 
which would undoubtedly expand our options  
to combat PTX resistance in ovarian cancer 
therapies.

BRAF (also known as, v-raf murine sarcoma 
viral oncogene homolog B1) oncogene is locat-
ed on chromosome 7q34 and encodes for a 
serine/threonine protein kinase (B-Raf), which 
is recruited to the membrane upon stimulation 
by growth factors [71, 72]. BRAF is a down-
stream effector within the ERK/MAPK signaling 

Figure 4. BRAFi Vemurafenib (VEM) enhances paclitaxel (PTX)-induced apop-
tosis in PTX-resistant human ovarian cancer cells. Subconfluent OVCAR8-
PR29B cells were seeded into 6-well cell culture plates, and treated with 
DMSO, 10 µM paclitaxel (PTX) and/or 10 µM vemurafenib (VEM). At 48 h, 
the cells were fixed and stained with the Magic Solution and examined under 
a fluorescence microscope (A). Representative apoptotic cells are indicated 
with arrows. Average % apoptotic cells (B) were calculated by counting % 
apoptotic cells in at least 10 random high power fields. Each assay condition 
was done in triplicate. Representative images are shown. 

ing TLR-4 dependent path-
way, c-Jun N-terminal kinase 
(JNK), p38 Mitogen Activated 
Protein (MAP) Kinase, nuclear 
factor kappa B (NF-κB), Janus 
kinase- (JAK-) signal transduc-
er and activator of transcrip-
tion factor (STAT) pathway 
[66-70]. Thus, it is conceiv-
able that alterations in these 
pathways may be responsible 
for the development of resis-
tance to paclitaxel.

In this study, we found that 
BRAF and several members  
of the RAS/MAPK pathways 
were upregulated upon PTX 
treatment in ovarian cancer 
cells, and that BRAF expres-
sion was significantly elevat-
ed in the PTX-resistant ovari-
an cancer cells, compared to 
that of the parental non-resis-
tant cells. These results pro- 
mpted us to investigate wh- 
ether BRAFi can sensitize 
PTX-resistant ovarian cancer 
cells to PTX, and found that 
VEM effectively enhanced 
PTX-induced growth inhibition 
and apoptosis in a dose-
dependent manner, and that 
VEM and PTX synergistically 
inhibited tumor growth and 
cell proliferation of PTX-re- 
sistant human ovarian cancer 
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Figure 5. BRAFi Vemurafenib (VEM) and paclitaxel (PTX) synergistically inhibit tumor growth of PTX-resistant human 
ovarian cancer cells. Exponentially growing HeyA8MDR cells were collected and subcutaneously injected into the 
flanks of athymic nude mice, which were randomly divided into four groups. At 3 days post implantation, the mice 
were injected with DMSO, paclitaxel PTX, and/or VEM intraperitoneally daily till sacrificed at 18 days after cell in-
jection. Tumor growth was monitored and average tumor growth rate was calculated (A). “*” P<0.05; “**” P<0.01 
compared with that of the DMSO group at respective time points. The retrieved tumors were photographed (B, a) 
and weighed (B, b). Representative images are shown. “*” P<0.05; “**” P<0.01 compared with that of the DMSO 
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pathway, which regulates growth, proliferation, 
differentiation, and apoptosis in human cells. 
Mutations in the BRAF oncogene are frequently 
found in 7% to 9% of advanced cancers, with 
the high incidence in melanoma (50%), papil-
lary thyroid cancer (45%), colorectal cancer 
(11%-12%), and non-small cell lung cancer (3%-
5%). Interestingly, BRAF mutation was found in 
approximately 35% of low-grade serous ovarian 
cancer (LGSC). A Phase 1 clinical trial has 
recently been conducted to investigate a com-
bination therapy with vemurafenib, carboplatin, 
and paclitaxel in patients with BRAF-mutated 
melanoma and other advanced malignancies; 
and it has been shown that the combination 
therapy was well tolerated and demonstrated 
encouraging activity [73].

Interestingly, an early study examined the com-
mon mutations at codon 599 of BRAF and 
codons 12 and 13 of KRAS in human ovarian 
cancer samples and found that mutations in 
either codon 599 of BRAF or codons 12 and 13 
of KRAS occurred in 68% of invasive micropap-
illary serous carcinomas and in 61%of serous 
borderline tumors, while none of the tumors 
contained a mutation in both BRAF and KRAS 
[74]. Another study revealed that activating 
KRAS mutations were more common in muci-
nous tumors (50%) than in all other histologic 
types combined (5%) [75]. A recent study 
revealed that KRAS mutations and the expres-
sion of EGFR and PKCα could be used as pre-
dictive biomarkers in patients with LGSC treat-
ed with MEKi, and that combination therapy 
using MEKi with EGFR inhibition may represent 
a promising new therapy for patients with MEKi-
resistant LGSC [76]. Therefore, these reported 
findings are highly supportive of the outcomes 
of our studies and suggest that targeting RAS/
MAPK pathways may overcome chemoresis-
tance to PTX in ovarian cancer. 

In summary, we demonstrated that BRAF was 
upregulated by PTX in ovarian cancer cells, and 
significantly elevated in PTX-resistant ovarian 
cancer cells. While the BRAFi vemurafenib 
(VEM) alone did not cause any significant cyto-
toxicity in PTX-resistant ovarian cancer cells, 
VEM was shown to effectively enhance PTX-

induced growth inhibition and apoptosis in a 
dose-dependent manner. Furthermore, VEM 
and PTX were shown to synergistically inhibit 
tumor growth and cell proliferation of PTX-
resistant human ovarian cancer cells in vivo. 
Collectively, these findings strongly suggest 
that BRAFi may be exploited as synergistic sen-
sitizers of paclitaxel in treating chemoresistant 
ovarian cancer. 
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Supplementary Table 1. List of qPCR Primers 
GENE Forward Primer Reverse Primer 
GAPDH GTCAAGGCTGAGAACGGGAA AAATGAGCCCCAGCCTTCTC 
BRAF TAAGATGGCGGCGCTGAG CTCCGGAATGGCAGGGTC 
MEK1 TGCAGGTTGGCTCTGCTC AGGAGGCCCAAAAGCGAC 
IGF1R ATGACATTCCTGGGCCAGTG TAGCTTGGCCCCTCCATACT 
ERK1 CCAGACCATGATCACACAGG CTGGAAAGATGGGCCTGTTA 
NRAS GACTCGTGGTTCGGAGGC ACCAAGGAGCGGCACTTC 
KRAS TGTGGTAGTTGGAGCTGGTG TGACCTGCTGTGTCGAGAAT 
MEK2 CGCTCCTACATGGCTCCG TCCAGCTCTTTGGCGTCG 


