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Abstract: Objective: Immune checkpoint inhibitors (ICI) has achieved remarkable clinical benefit in advanced lung 
adenocarcinoma (LUAD). However, effective clinical use of ICI agents is encumbered by the high rate of innate resis-
tance. The aim of our research is to identify significant gene mutations which can predict clinical benefit of immune 
checkpoint inhibitors in LUAD. Methods: The “mafComapre” function of “MafTools” package was used to screen 
the differentially mutated genes between durable clinical benefit (DCB) group and no durable clinical benefit (NDB) 
group based on the somatic mutation data from NSCLc_PD1_mSK_2018. Machine learning was performed to se-
lect significantly mutated genes to accurately classify patients into DCB group and NDB group. A nomogram model 
was constructed based on the significantly mutated genes to predict the susceptibility of patients to ICI. Finally, we 
explored the correlation between two classifications of immune cell infiltration, PD-1 and PD-L1 expression, tumor 
mutational burden (TMB) and prognosis. Results: Through utilize machine learning, 6 significantly mutated genes 
were obtained from 8 differentially mutated genes and used to accurately classify patients into DCB group and NDB 
group. The DCA curve and clinical impact curve revealed that the patients can benefit from the decisions made 
based on the nomogram model. Patients highly sensitive to ICI have elevated immune activity, higher expression of 
PD-1 and PD-L1, increased TMB, and well prognosis if they accept ICI treatment. Conclusions: Our research selected 
6 significantly mutated genes that can predict clinical benefit of ICI in LUAD patients. 
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Introduction

Lung cancer is one of the malignant tumors 
with the highest morbidity and mortality in the 
world [1]. Non-small cell lung cancer (NSCLC) 
accounts for 80-85% of all lung cancers, and 
adenocarcinoma is one of the important types 
of non-small cell lung cancer [2, 3]. Surgical 
combined with chemoradiotherapy is still the 
main treatment option for NSCLC. However, 
both the loss of surgical opportunity in 
advanced stage patients and the poor response 
to chemotherapy in patients with postoperative 
recurrence have promoted the development of 
non-operative and non-chemoradiotherapy 
treatment [4]. Among them, immune check-
point inhibitors (ICI) are one of the main 

research hotspots at present. Immune check-
point inhibitors, nivolumab and pembrolizumab 
have been approved for treatment in advanced 
and relapsed lung cancer patients by the Food 
and Drug Administration (FDA) and both of them 
can improve the survival outcomes of lung can-
cer patients [5-8]. However, ICI can also 
enhance normal immune response of the body 
while enhancing cellular immunity against 
tumor, leading to immune tolerance disorder of 
the body. Therefore, it is very important to find 
molecular biomarkers to predict clinical benefit 
of ICI in lung adenocarcinoma (LUAD). 

Many potential biomarkers have been explored 
to predict the response of lung cancer patients 
to ICI, such as lymphocyte infiltration, the 
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expression level of PD-L1, and tumor mutation 
burden [9-12]. However, these biomarkers are 
also in a dynamic state as the tumor progress-
es [13, 14]. Therefore, it is urgent to develop 
clinically useful tools to identify patients most 
likely to benefit from ICB treatment. Neoantige- 
ns derived from gene mutations have recently 
become one of the hotspots in immunotherapy 
efficacy studies [15-17]. Malignant tumors with 
genetic mutations produce new sequences of 
peptides that can be processed by antigen-pre-
senting cells (APC), and presented to T lympho-
cytes [18]. In general, patients with higher neo-
antigens are more likely to benefit from ICI [19, 
20]. However, it is not clear neoantigens derive 
from which gene mutations will increase the 
response of LUAD patients to ICI. The aim of our 
research is to identify significant gene muta-
tions to predict clinical benefit of ICI in LUAD.

Materials and methods

Data source

The Training dataset of this research, NSCLc_
PD1_mSK_2018 is derived from cbioportal 
database (https://www.cbioportal.org/study/
summary?id=nsclc_pd1_msk_2018). The data 
set contains 240 NSCLC samples, including 
192 LUAD samples. Among the 192 LUAD 
patients, 179 LUAD patients received anti-
PD-1/PD-L1 and (or) anti-CTLA4 treatment, 
including 55 patients with durable clinical ben-
efit (DCB) and 124 patients with no durable 
clinical benefit (NDB). The Validation dataset, 
MIXed_allen_2018 is also available from the 
cbioportal database (https://www.cbioportal.
org/study/summary?id=mixed_allen_2018). 
The data set contains somatic mutation data 
from 47 LUAD patients receiving anti-PD-1/
PD-L1 treatment, including 20 patients with 
DCB and 27 patients with NDB. Another valida-
tion dataset, TCGA-LUAD dataset download- 
ed from GDC Data Portal, including 594 LU- 
AD patients (https://portal.gdc.cancer.gov/proj-
ects/TCGA-LUAD). Somatic mutation data, 
mRNA expression profiling data and clinical 
information of LUAD patients were obtained 
from this database. Patients in TCGA-LUAD 
dataset were not treated with anti-PD-1/PD-L1 
or anti-CTLA4.

Screening of differentially mutated genes

Patients in training dataset were divided into 
DCB and NDB groups. Somatic mutation data 

files were converted into MAF files. The “mafCo-
mapre” function of R software’s “MafTools” 
package was used to screen the differentially 
mutated genes. Fisher test was performed and 
P < 0.05 was considered statistically significant 
[21].

Construction of the classification models using 
machine learning

Machine learning is a branch of artificial intelli-
gence. It involves two important steps, first 
training with existing data, and then predicting 
unknown data [22]. In our research, we con-
struct classification models to distinguish DCB 
and NDB groups using machine learning. We 
used “caret” package in R software to con-
struct the random forest (RF) model, general-
ized linear model (GLM) and support vector 
machine model (SVM) respectively based on 
the training dataset. We then used the explain 
function of the “DALEX” package to perform an 
explanatory analysis of the three models. 
Finally, we choose the model with the smallest 
residual error as the best model.

Establishment and evaluation of the nomo-
gram model

The “Nomogram” function of the “rms” pack-
age in R software was invoked to establish the 
nomogram model based on the variables 
selected by machine learning. The predicted 
result can be obtained by adding the corre-
sponding score on the score axis of each vari-
able. The calibration curve was used to verify 
the performance of the model. Decision curve 
analysis (DCA) and clinical impact curve were 
plotted to evaluate the clinical value of the 
nomogram model [23].

Estimate of tumor immune cell infiltration by 
CIBERSORT algorithm 

We first used CIBERSORT algorithm to analyze 
the RNA expression profile data of LUAD sam-
ples from TCGA-LUAD dataset. We then down-
loaded the expression profiles of 547 genes of 
22 immune cell types from CIBERSORT website 
as reference data (http://cibersort.stanford.
edu/). Expression profile data of TCGA-LUAD 
dataset was compared with the reference data 
by deconvolution and support vector machine, 
the infiltration score of 22 immune cell types in 
each sample were obtained [24, 25].
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Calculation of tumor mutational burden in 
LUAD patients

Tumor mutational burden (TMB) is the total 
number of non-synonymous mutations in each 
coding region of the tumor genome. In our 
research, the TMB of LUAD patients was calcu-
lated using the following formula: TMB = Sn × 
1,000,000/n (Sn means the absolute value of 
somatic mutations, n means the number of 
exon base coverage depth ≥ 100×) [25].

Statistical analysis

One-way ANOVA and Kruskal-Wallis tests were 
used to compare the differences between the 
groups. A two-sided p-value of less than 0.05 
was considered statistically significant. The 
survival curve was plotted by the Kaplan-Meier 
method, and the log-rank test was performed 
to compare the statistical significance of the 
survival difference between the two groups. All 
statistical analyses were performed using R 
4.0.0.

Results

Somatic mutations in LUAD patients from the 
training dataset

We transferred the somatic mutation data files 
from training dataset into MAF files. The 
“maftools” package in R software was used to 
visualize the mutation information of LUAD hid-
den in the MAF file. Oncoplot shows the top 30 
mutated genes in LUAD, with TP53 being the 
most frequently mutated gene (Figure 1A). 
Stacked bar plot shows the fraction of conver-
sions in each LUAD sample. We can find that C 
> T is the main type of mutation in LUAD,  
and “Transversions” (Tv) was higher than 
“Transitions” (Ti) (Figure 1B).

Screening of differentially mutated genes

LUAD samples were classified into DCB and 
NDB groups. We found 8 differentially mutated 
genes between DCB and NDB groups, and the 
results were visualized by Forest plots (Figure 
2A) and Co-onco plots (Figure 2B). Among the 8 
differentially mutated genes, the mutation rate 
of ERBB4, ATRX, FAT1, KDM5C, ASXL1, AR and 
MGA in DCB group was higher than in NDB 
group, while SMAD4 was the opposite. Lollipop 
plot indicated that the group with a higher 

mutation rate holds more sequences of pep-
tides (Figure 3).

Construction of the classification models by 
using machine learning

We established the RF, GLM and SVM model 
based on the 8 differentially mutated genes 
respectively to classify the LUAD samples in 
training dataset into DCB and NDB groups. The 
residual represents the deviation from the true 
value. The smaller the absolute value of residu-
al, the more accurate the model is. The correct 
interpretation of “Reverse cumulative distribu-
tion of residual” graph is that a small number of 
samples contribute a lot of residuals. If the line 
is above, then it represents a large number of 
samples with a large residual. In Figure 4A, we 
found that a large number of samples have rel-
atively small residuals in RF model compared to 
the other two models. The red dot of “Boxplots 
of residual” represents the mean value of resid-
uals of all samples. Figure 4B revealed that the 
mean value of residuals in RF model was small-
er than other models. The mean value of resid-
uals in RF, GLM and SVM model was 0.510, 
0.512, 0.612 respectively. ROC curves was 
plotted and the AUC of RF, GLM and SVM model 
was 0.90, 0.88, 0.83 respectively, which again 
demonstrates the superiority of the RF model. 
Therefore, the RF model was finally selected as 
the best model. The RF model ranks eight dif-
ferentially mutated genes according to their 
contribution to classification (Figure 4D). In 
order to find the best combination of categoriz-
ing variables, we performed 10 fold cross vali-
dation. The cross validation curve revealed that 
the RF model has the highest accuracy when 
the top six variables (ERBB4, ATRX, FAT1, 
KDM5C, ASXL1 and AR) are selected (Figure 
4E).

Construction of the nomogram model

We used the selected mutated genes by RF 
model to construct a nomogram model to pre-
dict the susceptibility of LUAD patients to ICI 
(Figure 5A). Calibration curve indicated that the 
well accuracy of the nomogram model (Figure 
5B). The red lines of the DCA curve are above 
the gray and black lines from 0 to 1, which 
revealed that the LUAD patients can benefit 
from the decisions made based on the nomo-
gram model (Figure 5C). The clinical impact 
curve indicated that the predicted number of 
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Figure 1. Somatic mutation profiling of lung adenocarcinoma (LUAD) patients in NSCLc_PD1_mSK_2018. A. Onco-
plot shows the top 30 genes with the highest mutation frequency in 179 patients with LUAD from the training cohort. 
Each column shows one patient. The upper barplot represents the TMB of each sample. The right barplot represents 
the sample size with corresponding gene mutation. B. Transition and Transversions plot shows the distribution of 
SNPs in LUAD. Stacked bar plot shows the fraction of conversions in each sample.

high-risk patients was similar to the number of 
high-risk patients with an event from 0.25 to 1, 
which showed that the predictive power of the 
nomogram model was remarkable (Figure 5D).  

Correlation between two classifications of im-
mune cell infiltration, PD-1 and PD-L1 expres-
sion

According to the constructed nomogram model, 
patients in TCGA-LUAD dataset were divided 
into Sub1 group and Sub2 group. Patients in 
Sub2 group were predicted having higher sensi-

tivity to ICI. We found that patients in Sub2 
group have higher infiltration of CD8+T cells, 
activated CD4+T cells, activated NK cells and 
Macrophages M1 (Figure 6). In addition, the 
expression of PD-1 and PD-L1 was higher in 
Sub2 group than Sub1 group (Figure 7).

The DCB group have elevated TMB and prog-
nosis 

Multiple studies have shown that TMB is posi-
tively correlated with tumor immune checkpoint 
inhibitors response [26, 27]. Indeed, we 
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Figure 2. Differentially mutated genes. A. Forest plots show 8 differentially mutated genes (ERBB4, ATRX, FAT1, 
KDM5C, ASXL1, AR, MGA and SMAD4) between durable clinical benefit (DCB) group (n = 55) and no durable clini-
cal benefit (NDB) group. (n = 124) using the training corhort. B. Co-onco plots show 8 differentially mutated genes 
between DCB group and NDB group. (*P < 0.05; **P < 0.01; ***P < 0.001).

observed that patients in DCB group have high-
er TMB than in NDB group (Figure 8A and 8B). 
Patients in Sub2 group also have higher TMB 
than in Sub1 group, which proves the excellent 
accuracy of our prediction model from the side 
(Figure 8C). The Kaplan-Meier curve showed 
that the patients in DCB group have a better 
prognosis than in NDB group, while the patients 
in Sub2 group and Sub1 group have no statisti-
cal difference (Figure 8D-F). 

Discussion

In this research, we selected 6 significantly 
mutated genes that can effectively distinguish 

LUAD patients received ICI therapy into DCB 
group (Sub2) and NDB (Sub1) group based on 
RF classifications. Patients in Sub2 group were 
significantly associated with elevated immune 
activity, increased TMB, and over-expression of 
PD-1 and PD-L1. Patients highly sensitive to ICI 
can significantly extend their survival time by 
receiving ICI therapy. These results suggest 
that the classification model constructed based 
on the 6 significantly mutated genes can effec-
tively identify a group of patients which benefit 
from ICI therapy.

Previous research has reported a set of bio-
markers to predict the response of ICI to thera-
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Figure 3. Lollipop Plot shows the differentially sequences of peptides of 8 mutated genes between DCB group and NDB group using the training corhort. The DCB 
group is above the horizontal axis, and NDB group is below the horizontal axis. The lollipops on the horizontal axis represents different variant type (A). ERBB4 (B). 
ATRX (C). FAT1 (D). KDM5C (E). ASXL1 (F). AR (G). SMAD4 (H). MGA.
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Figure 4. Construction of the classification models using machine learning based on the training dataset. A. The 
residual represents the deviation from the true value. The smaller the absolute value of residual, the more accurate 
the model is. Reverse cumulative distribution of residual was plotted to show the residual distribution of samples in 
random forest (RF) model, generalized linear model (GLM) and support vector machine model (SVM). B. Boxplots of 
residual was plotted to show the residual distribution of RF, GLM and SVM model. The red dot represents the mean 
value of residuals of all samples. C. ROC curves was plotted and the AUC of RF, GLM and SVM model was 0.90, 
0.88, 0.83 respectively. D. RF model was performed to show the importance of 8 differentially mutated genes to 
distinguish the DCB group and NDB group. The horizontal axis shows the importance score of genes. E. Cross valida-
tion curve was plotted to show the accuracy of the RF model from variable = 1 to 8. The horizontal axis shows the 
number of variables. The vertical axis shows the accuracy of the model corresponding to the number of variables.

py [28-30]. However, most research was 
focused on single variable, and the non-unified 
cutoff values make the research results imprac-
tical. Considering the heterogeneity of tumor, 
the predictive ability of a single gene mutation 
was weak. We used differentially mutated 
genes to train the performance of the classifi-
cation model, and finally found the most accu-
rate mutated gene set to predict the sensitivity 
of LUAD patients with ICI therapy. We found the 
RF classifications can not only accurately pre-
dict DCB and NDB in LUAD, but also not be con-
strained by the optimal cut-off value. It sug-
gests that the new classification algorithm is 

not only easy to generalize, but also can identify 
potentially beneficiaries of ICI therapy.

Several studies reported that tumors with pres-
ence CD8 T-Cell infiltration and higher expres-
sion of PD-L1 can benefit from ICI therapy [31, 
32]. Research of KEYNOTE-010 revealed that 
the advanced lung cancer patients with high 
expression of PD-L1 had a significantly better 
efficacy to pembrolizumab than those with low 
expression of PD-L1 [33]. In our research, we 
also proved that patient sensitivity to ICI thera-
py has high expression of PD-1 and PD-L1. As 
expected, patients in Sub2 group have higher 
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Figure 5. Construction of the nomogram model. A. Construction of the nomogram model based on the 6 significantly 
mutated genes (ERBB4, ATRX, FAT1, KDM5C, ASXL1 and AR). Vertical line passes through the value of each gene, 
and obtains a integral on the integral line at the top of the nomogram. The integrals of all the genes are added to 
obtain a total score to predict the benefit to ICIs at the bottom of the nomogram. B. The calibration curve revealed 
the predictiveness of the nomogram model. The “Apparent” curve closed to the “Ideal” curve represents that the no-
mogram model is accurate in predicting the sensitivity of patients to ICIS treatment. C. The DCA curve evaluated the 
clinical value of the nomogram model. The x-axis indicates the predicted probability, and the y-axis represents the 
net benefit. D. The clinical impact curve was used to assess the clinical impact of the nomogram model. The “Num-
ber high risk” curve was closed to the “Number high risk with event” curve at high risk threshold from 0.23 to 1.

infiltration of CD8+T cells than in Sub1 group 
[34]. Consistent with the research of Jie Peng, 
activated NK cells and Macrophages M1 were 
high infiltration in Sub2 group than Sub1 group 
[35]. CD4+T cells, as a driving factor of anti-
tumor immunity, were elevated activated in 
Sub2 group than in Sub1 group, which is con-
sistent with previous research results [34]. 
Moreover, we found that patients in DCB group 
have increased TMB than in NDB group, which 
indicated that the patients in DCB group exhibit 
higher neoantigens. The RF model based on 
the 6 significantly mutated genes also found 
that the patients in Sub2 group have increased 
TMB, which verifies the accuracy of our classifi-
cation model to some extent. Finally, the sur-
vival curve showed that the patients in DCB 
group have longer survival time than in NDB 
group. However, patients in Sub2 group and 
Sub1 group have no statistical difference, 

which suggested that the patients highly sensi-
tive to ICI can only improve their survival time 
by receiving ICI therapy.

Conclusions

In conclusion, our research revealed that the 
classification model of RF based on 6 signifi-
cantly mutated genes can predict the sensitivi-
ty of the LUAD patients with ICI therapy. The 
research may provide a new anticancer immu-
notherapy strategy to LUAD.
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Figure 6. Sub2 group is associated with elevated immune activity in LUAD. (A) CD8+ T cells (B) activated CD4+ T 
cells (C) activated NK cells (D). Macrophages M1 showed significantly higher enrichment levels in Sub2 group than 
in Sub1 group. (*P < 0.05; **P < 0.01; ***P < 0.001).

Figure 7. Sub2 group is associated with elevated PD-1 and PD-L1 Expression in LUAD. A. Sub2 group patients have 
significantly higher PD-1 expression levels than Sub2 group patients. B. Sub2 group patients have significantly 
higher PD-L1 expression levels than Sub2 group patients. (*P < 0.05; **P < 0.01; ***P < 0.001).
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