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Figure 5. The effect of the Nestin1 silencing on the cisplatin-treated bladder cancer (BC) cells. T24 and J82 cells were transfected with normal control siRNA (siNC) 
or Nestin1 siRNA (siNestin1) and then treated with 20 mg/L cisplatin for 60 h (A, B). The cell lines were stained using a ROS detection probe, and the production 
of ROS was analyzed by flow cytometry (C-F). RT-qPCR and WB revealed the effect of cisplatin on the expression levels of the antioxidant-related genes GCLM, 
HMOX1, and NQO1 in the BC cells (G, H). The CCK-8 assay was used to determine the cell viability (I, J). The colony formation of the cell lines was treated with 20 
mg/L cisplatin for 96 h (K, L). Cisplatin (20 mg/L) was added to the cells for 24 h, following which the cell apoptosis was measured using annexin V/PI staining and 
analyzed using flow cytometry. The results are expressed as a percentage of the control values and are presented as the mean ± SD of three separate experiments. 
*P ≤ 0.05 vs. Cisplatin + siNC.
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well as externally. Nestin1-positive progenitor 
cells within the cerebellum displayed more 
severe genomic instability and efficient tumor 
cell transformation than the granule neuron 
precursors [26]. Nestin1-expressing progenitor 
cell-like cells that had dedifferentiated from 
mature hepatocytes might develop into hepato-
cellular carcinomas and cholangiocarcinomas 
[27]. The use of a nestin1-targeting siRNA 
revealed that tumors could be inhibited inter-
nally through the suppression of tumor angio-
genesis [28]. Our results demonstrated that 
cisplatin induced the expression of Nestin1 
protein in BC cells and that there was a positive 
correlation between the Nestin1 and Nrf2 pro-
tein levels. Through loss- and gain-of-function 
assays in T24 and J82 cells, we determined 
that Nestin1 overexpression ameliorated the 
ROS generation induced by cisplatin and fur-

Our data showed that Nestin1 and Nrf2 partici-
pated in the maintenance of the antioxida- 
tive potential of BC cells and the crosstalk 
between the two critical pathways. Additionally, 
Nestin1 depletion was observed to significantly 
increase the cisplatin sensitivity by mediating 
ROS generation, antioxidative damage, and cell 
death in the T24 and J82 cells. However, one 
limitation of this study is the lack of more in 
vivo confirmation experiments, including the 
use of Nestin1-knockout/knockdown mice for 
the xenograft tumor experiment. Therefore, 
more animal experiments will be performed in 
our future studies to verify the function of 
Nestin1 in cisplatin-treated BC tumors.

In conclusion, the results of this study provide a 
theoretical basis for targeting Nrf2 transcrip-
tional regulators, which may be applied as 

Figure 6. The effect of Nestin1 on tumor growth in a mouse model of cisplatin-treated xenograft bladder cancer. A. 
Nude mice were injected subcutaneously with 4 × 106 Nestin1-overexpressing or -silenced T24 cells. After 1 week, 
the mice were treated with 5 mg/L cisplatin for 10 continuous days. The tumor sizes were measured at specific time 
points after the treatment and calculated and plotted (n = 6/group). B. Tumor weights after the treatment. C. Rep-
resentative tumors at the end of the study period. D. A Western blot analysis was carried out to examine the protein 
expression levels of Nestin1 and Nrf2 in the typical tumors. E. The cell lines were stained using an ROS detection 
probe, and the production of ROS was analyzed using flow cytometry. F. Sections from the paraffin-embedded tumor 
tissues were selected for analysis using TUNEL staining. Representative TUNEL staining pictures are shown. The 
results are expressed as a percentage of the control values and are presented as the mean ± SD of 3 separate 
experiments. *P ≤ 0.05 vs. indicated group.

Figure 7. A schematic diagram illustrating the mechanism of Nestin1 induc-
tion using cisplatin treatment in bladder cancer cells. Treatment of the cells 
with cisplatin causes increases in the ROS levels and in the Nestin1 expres-
sion. This increase in the Nestin1 level subsequently protects Nrf2 from deg-
radation, thereby allowing it to exert its function in triggering the transcrip-
tion of the antioxidant genes. These antioxidants can then ameliorate the 
harmful effects of the ROS on the BC cells.

ther upregulated antioxidant 
gene expression, thereby re- 
covering the viability and 
growth of the BC cells and 
downregulating their apopto-
sis. By contrast, Nestin1 
depletion had the opposite 
effects and resulted in more 
severe cell injury than that 
observed in the siNC-trans-
fected group. Additionally, 
Nestin1 overexpression par-
tially abolished the cisplatin-
mediated suppression of the 
tumor growth in vivo, but the 
Nestin1 silencing enhanced 
the chemosensitivity of the BC 
xenograft. On the basis of 
these observations, we sug-
gest that Nestin1 may en- 
hance the chemoresistance  
of BC tumors to cisplatin in 
vivo by activating the Nrf2-
mediated antioxidative path- 
way.
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effective and safe drugs for the chemoprophy-
laxis of BC and other tumors as well as a variety 
of other illnesses [29].
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